LT1303/LT1303-5

Micropower High Efficiency DC/DC Converters with Low-Battery Detector Adjustable and Fixed 5V

feATURES

- 5 V at 200 mA from a 2 V Input
- Supply Voltage As Low As 1.8 V
- Up to 88\% Efficiency
- 120 1 A Quiescent Current
- Low-Battery Detector
- Low V ${ }_{\text {CESAT }}$ Switch: 170 mV at 1A Typ
- Uses Inexpensive Surface Mount Inductors
- 8-Lead PDIP or SO Package

APPLICATIONS

- EL Panel Drivers
- 2-Cell and 3-Cell to 5 V Conversion
- Palmtop Computers
- Portable Instruments
- Bar-Code Scanners
- PDAs
- Wireless Systems

DESCRIPTION

The LT ${ }^{\otimes} 1303 / L T 1303-5$ are micropower step-up high efficiency $D C / D C$ converters using Burst Mode ${ }^{\text {TM }}$ operation. They are ideal for use in small, low-voltage batteryoperated systems. The LT1303-5 accepts an input voltage between 1.8 V and 5 V and converts itto a regulated 5 V . The LT1303 is an adjustable version that can supply an output voltage up to 25 V . Quiescent current is only $120 \mu \mathrm{~A}$ from the battery and the shutdown pin further reduces current to $10 \mu \mathrm{~A}$. The low-battery detector provides an opencollector output that goes low when the input voltage drops below a preset level. The on-chip NPN power switch has a low 170 mV saturation voltage at a switch current of 1 A. The LT1303/LT1303-5 are available in 8 -lead PDIP or SO packages, easing board space requirements.
For higher output current, please see the LT1305 or LT1302.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. 2-Cell to 5V DC/DC Converter with Low-Battery Detect

ABSOLUTE MAXIMUM RATINGS

SW1 Voltage ... 25V
Sense Voltage (LT1303-5) 20V
FB Voltage (LT1303) .. 10V
Shutdown Voltage .. 10V
LBO Voltage ... 10V
LBI Voltage .. 10V
Maximum Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
LBO 2 - 7 SW	LT1303CN8
SHDN 3 3 $6 \mathrm{~V}_{\mathrm{IN}}$	LT1303CS8
FB (SENSE)* 4 5 LBI	LT1303CN8-5
	LT1303CS8-5
8-LEAD PDIP	
S8 PACKAGE	S8 PART MARKING
*FIXED VERSION	1303
$\begin{aligned} & \mathrm{T}_{\text {JMAX }}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N} 8) \\ & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S} 8) \end{aligned}$	13035

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERIST|CS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{1}$	Quiescent Current	$\begin{aligned} & V_{\text {SHDN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 120 \\ 7 \end{gathered}$	$\begin{gathered} 200 \\ 15 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{\mathrm{V}} \mathrm{IN}$	Input Voltage Range		\bullet	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	1.55		V
	Feedback Voltage	LT1303	\bullet	1.22	1.24	1.26	V
	Output Sense Voltage	LT1303-5	\bullet	4.8	5.0	5.2	V
	Comparator Hysteresis	LT1303 (Note 1)	\bullet		6	12.5	mV
	Output Hysteresis	LT1303-5 (Note 1)	\bullet		22	50	mV
	Feedback Pin Bias Current	LT1303, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$	\bullet		7	20	nA
	Oscillator Frequency	Current Limit Not Asserted		120	155	185	kHz
	Oscillator TC				0.2		\%/ ${ }^{\circ} \mathrm{C}$
DC	Maximum Duty Cycle		\bullet	75	86	95	\%
t_{ON}	Switch On Time	Current Limit Not Asserted			5.6		$\mu \mathrm{s}$
	Output Line Regulation	$1.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$	\bullet		0.06	0.15	\%/V
$\mathrm{V}_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=700 \mathrm{~mA}$	\bullet		130	200	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch Off	\bullet		0.1	10	$\mu \mathrm{A}$
	Peak Switch Current	$\begin{aligned} & V_{\text {IN }}=2 V \\ & V_{\text {IN }}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.15 \end{aligned}$	A
	LBI Trip Voltage		\bullet	1.21	1.24	1.27	V
	LBI Input Bias Current	$\mathrm{V}_{\mathrm{LBI}}=1 \mathrm{~V}$	\bullet		7	20	nA
	LBO Output Low	$\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$	\bullet		0.11	0.4	V
	LBO Leakage Current	$\mathrm{V}_{\mathrm{LBI}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LB} 0}=5 \mathrm{~V}$	\bullet		0.1	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SHDNH }}$	Shutdown Pin High		\bullet	1.8			V
$V_{\text {SHDNL }}$	Shutdown Pin Low					0.5	V
ISHDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{\text {SHDN }}=5 \mathrm{~V} \\ & V_{\text {SHDN }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline 8.0 \\ & 3.0 \\ & 0.1 \\ & \hline \end{aligned}$	20 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

The denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.

Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive.

TYPICAL PERFORMAOCE CHARACTERISTICS

LT1303 601
LT1303 FB Voltage

LT1330 G04

LT1303 G02
LT1303-5 Sense Voltage

LT1303 G05
FB Pin Bias Current

LT1303-5 Sense Pin Resistance to Ground

LT1303 GO3
Low Battery Detect Trip Point

LT1303 G06

LT1303/LT1303-5

TYPICAL PERFORMANCE CHARACTERISTICS

Switch On-Time

LT1303 G10
Quiescent Current

Transient Response
Figure 1 Circuit

$$
\begin{aligned}
& V_{I N}=2 \mathrm{~V} \\
& V_{\text {OUT }}=5 \mathrm{~V}
\end{aligned}
$$

Oscillator Frequency

Quiescent Current

LT1303 G14

Shutdown Pin Response

$R_{\text {LOAD }}=100 \Omega$
$V_{\text {IN }}=2 \mathrm{~V}$
$V_{\text {OUT }}=5 \mathrm{~V}$
$C_{\text {OUT }}=100 \mu \mathrm{~F}$

Maximum Duty Cycle

LT1303 G12
Switch Current Limit

Low Battery Detector Transient Response

RPULL-UP $=47 \mathrm{k}$

PIn functions

GND (Pin 1): Signal Ground. Tie to PGND under the package.
LBO (Pin 2): Open-Collector Output of Low-Battery Comparator. Can sink $100 \mu \mathrm{~A}$. Disabled when device is in shutdown.
SHDN (Pin 3): Shutdown. Pull high to shut down the device. Ground for normal operation.
FB/Sense (Pin 4): On 1303 (adjustable) this pin connects to the main comparator C1 input. On LT1303-5 this pin connects to the resistor string that sets output voltage at 5 V .

LBI (Pin 5): Low-Battery Comparator Input. When voltage on this pin below 1.24 V , LBO is low.
V_{IN} (Pin 6): Supply Pin. Must be bypassed with a large value electrolytic to ground. Keep bypass within 0.2^{2} of the device.
SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize radio frequency interference.
PGND (Pin 8): Power ground. Tie to signal ground (pin1) under the package. Bypass capacitor from $\mathrm{V}_{\text {IN }}$ should be tied directly to PGND within 0.2 " of the device.

BLOCK DIAGRAMS

Figure 2. LT1303 Block Digram

5

BLOCK DIAGRAMS

Figure 3. LT1303-5 Block Diagram

OPERATION

Operation of the LT1303 is best understood by referring to the Block Diagram in Figure 2. When C1's negative input, related to the output voltage by the appropriate resistordivider ratio, is higher than the 1.24 V reference voltage, C1's output is low. C2, A3 and the oscillator are turned off, drawing no current. Only the reference and C1 consume current, typically $140 \mu \mathrm{~A}$. When C1's negative input drops below 1.24 V and overcomes C1's 6 mV hysteresis, C1's output goes high, enabling the oscillator, current comparator C2 and driver A3. Quiescent current increases to 2 mA as the device goes into active switching mode. Q1 then turns on in controlled saturation for nominally $6 \mu \mathrm{~s}$ or until current comparator C2 trips, whichever comes first. The switch thenturns offfor approximately $1.5 \mu \mathrm{~s}$, thenturns on again. The LT1303's switching causes current to alternately build up in L1 and dump into output capacitor C 4 via D1, increasing the output voltage. When the output is high enough to cause C1's output to go high, switching action ceases. Capacitor C4 is left to supply current to the load until $V_{\text {OUT }}$ decreases enough to force C1's output high, and the entire cycle repeats. Figure 4 details relevant waveforms. C1's cycling causes low-to-mid-frequency ripple voltage on the output. Ripple can be reduced by making the
output capacitor large. The $100 \mu \mathrm{~F}$ unit specified results in ripple of 50 mV to 100 mV on the 5 V output. A $220 \mu \mathrm{~F}$ capacitor will decrease ripple by approximately 50%.

Figure 4. Burst Mode Operation in Action

If switch current reaches 1A, causing C2 to trip, switch ontime is reduced and off-time increases slightly. This allows continuous operation during bursts. C2 monitors the voltage across 3Ω resistor R1 which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 18 mV , corresponding to 1 A switch current, C2's output goes high, truncating the ontime portion of the oscillator cycle and increasing off-time

OPERATION

to about $2 \mu \mathrm{~s}$. Response time of C 2 , which determines minimum on-time, is approximately 300 ns .

Low Battery Detector

The low battery detector is enabled when SHDN is low and disabled when SHDN is high. The comparator has no

$\mathrm{R} 1=\left(\mathrm{V}_{\text {TRIP }}-1.24 \mathrm{~V}\right)(43.5 \mathrm{k})$ HYSTERESIS $\approx 30 \mathrm{mV}$

Figure 5. R3 Adds Hysteresis to Low-Battery Detector
hysteresis built in, but hysteresis can be added by connecting a high-value resistor from LBI to LBO as shown in Figure 5. The internal reference can be accessed via the comparator as shown in Figure 6.

Figure 6. Accessing Internal Reference

APPLICATIONS INFORMATION

Inductor Section

Inductors suitable for use with the LT1303 usually fall in the $5 \mu \mathrm{H}$ to $50 \mu \mathrm{H}$ range. The inductor must: (1) handle current of 1.25 A without saturating, (2) have enough inductance to provide a di/dt lower than $400 \mathrm{~mA} / \mu \mathrm{s}$, and (3) have low enough DC resistance to avoid excessive heating or efficiency losses. Higher value inductors will deliver more power but tend to be physically larger. Most ferrite core drum or rod inductors such as those specified in Table 1 are suitable for use. It is acceptable to bias openflux inductors (e.g. Sumida CD54) into saturation by 10 to 20\% without adverse effects.

Table 1. Recommended Inductors

VENDOR	SERIES	APPROPRIATE VALUES	PHONE NUMBERS
Coilcraft	D03316 D01608	$10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$ $10 \mu \mathrm{H}$	$(708) 639-6400$
Coiltronics	OCTAPAK CTX20-1	$20 \mu \mathrm{H}$ $20 \mu \mathrm{H}$	$(407) 241-7876$
	CTX20-2		
CTX33-4	$33 \mu \mathrm{H}$		
Sumida	CD54	$10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$	(708) 956-0666
Gowanda	GA10	$10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$	(716) 532-2234

Figure 7 shows inductor current of a suitable inductor, di/dt is controlled at all times. The rapid rise in current shown in Figure 8 results from this inductor saturating at approximately 1A. Saturation occurs when the inductor cannot hold any more magnetic energy in the core. Current then increases rapidly, limited only by the resistance of the winding. Figure 9's inductor has high DC resistance which results in the exponential time constant shape of the inductor current.

Figure 7. Properly Chosen Inductor Does Not Saturate

APPLICATIONS INFORMATION

Figure 8. This Inductor Saturates at $\mathrm{I}_{\mathrm{L}} \sim 1 \mathrm{~A}$. A Poor Choice

Figure 9. Slight Exponential Shape to Inductor Current Waveform Indicates Excessive DC Resistance

Diode Selection

The LT1303's high switching speed demands a high speed rectifier. Schottky diodes are preferred for their low forward drop and fast recovery. Suitable choices include the 1N5817, MBRS120LT3, and MBR0520LT1. Do not use signal diodes such as 1N4148. They cannot carry 1A current. Also avoid "general-purpose" diodes such as 1N4001. These are far too slow and are unsuitable for any switching regulator application. For high temperature applications a silicon diode such as the MUR105 will have less leakage.

Capacitor Selection

Input and output capacitors should have low ESR for best efficiency. Recommended capacitors include AVX TPS series, Sprague 595D series, and Sanyo OS-CON. The output capacitor's ESR determines the high frequency ripple amplitude. A $100 \mu \mathrm{~F}$ capacitor is the minimum recommended for a 5 V output. Higher output voltages can use lower capacitance values. For example, a 12 V output can use a $33 \mu \mathrm{~F}$ or $47 \mu \mathrm{~F}$ capacitor. The $\mathrm{V}_{\text {IN }}$ pin of the LT1303 should be decoupled with a $47 \mu \mathrm{~F}$ or $100 \mu \mathrm{~F}$ capacitor at the pin. When driving a transformer, an additional decoupling network of 10Ω and $0.1 \mu \mathrm{~F}$ ceramic is recommended as shown in Figure 10.

Figure 10. 10 Ω-1 μ F Network to LT1303 $V_{\text {IN }}$ Pin Provides Additional Decoupling. Recommended When Driving Transformers.

Table 2. Recommended Capacitors

VENDOR	SERIES	TYPE	PHONE NUMBERS
AVX	TPS	Surface Mount	(803) 448-9411
Sanyo	OS-CON	Through-Hole	(619) 661-6835
Panasonic	HFQ	Through-Hole	$(201) 348-5200$
Sprague	595D	Surface Mount	$(603) 224-1961$

TYPICAL APPLICATIONS

Setting Output Voltage on LT1303

5V Step-Up Converter with Reference Output

TYPICAL APPLICATIONS

4-, 5-Cell to 5V Converter with Output Disconnect

3-Cell to 3.3V Boost/Linear Converter with Output Disconnect

TYPICAL APPLICATIONS

EL Panel Driver

[^0]Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of circuits as described herein will not infringe on existing patent rights.

LT1303/LT1303-5

PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1129	Micropower Low Dropout Regulator	700mA Output Current in S0-8 Package
LT1182/83/84	LCD and CCFL Backlight Controller	High Efficiency and Excellent Backlight Control Range
LT1301	5V to 12V/200mA Step-Up DC/DC Converter	120 μ A Quiescent Current
LT1302	2-Cell to 5V/600mA Step-Up DC/DC Converter	200 μ A Quiescent Current
LT1305	Micropower 2A Switch DC/DC Converter with Low-Battery Detect	2V to 5V at 400mA
LT1372	500kHz Step-Up PWM, 1.5A Switch	Low Noise, Fixed Frequency Operation
LTC ${ }^{\circledR} 1472$	PCMCIA Host Switch with Protection	Includes Current Limit and Thermal Shutdown

[^0]: *ADD C1 FOR OPEN-PANEL PROTECTION
 **DALE LPE5047-A132 1:15 TURNS RATIO (605) 666-9301
 ${ }^{\dagger}$ R1 ADJUSTS V ${ }_{\text {OUT }} 83 \mathrm{~V}_{\text {RMS }}$ TO $115 \mathrm{~V}_{\text {RMS }}$

