



### 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

### Typical Applications

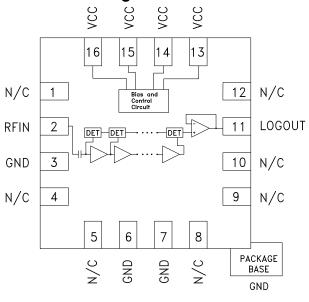
The HMC948LP3E is ideal for:

- · Point-to-Point Microwave Radio
- VSAT
- Wideband Power Monitoring
- · Receiver Signal Strength Indication (RSSI)
- Test & Measurement

#### **Features**

Wide Input Bandwidth: 1 to 23 GHz

Wide Dynamic Range: 54 dB up to 23 GHz


Single Positive Supply: +3.3V

**Excellent Stability Over Temperature** 

Fast Rise / Fall Time: 5 / 7 ns

16 Lead 3x3 mm SMT Package: 9 mm<sup>2</sup>

### **Functional Diagram**



### **General Description**

The HMC948LP3E Logarithmic Detector converts RF signals at its input, to a proportional DC voltage at its output. The HMC948LP3E employs successive compression topology which delivers high dynamic range over a wide input frequency range. As the input power is increased, successive amplifiers move into saturation one by one creating an approximation of the logarithm function. The output of a series of square law detectors is summed, converted into the voltage domain and buffered to drive the LOG OUT output. The HMC948LP3E provides a nominal logarithmic slope of +14.2 mV/dB and an intercept of -111 dBm at 23 GHz. Ideal as a log detector for high volume microwave radio and VSAT applications, the HMC948LP3E is housed in a compact 3x3 mm RoHS compliant SMT plastic package.

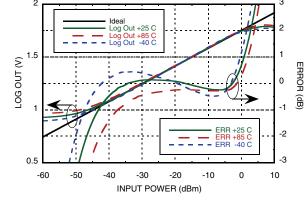
### Electrical Specifications, $T_A = +25$ C Vcc = +3.3V

| Parameter                               | Тур. | Units |
|-----------------------------------------|------|------|------|------|------|------|------|-------|
| Input Frequency <sup>[1]</sup>          | 1    | 5    | 10   | 14   | 18   | 20   | 23   | GHz   |
| ±3 dB Dynamic Range                     | 53   | 54   | 54   | 55   | 55   | 55   | 55   | dB    |
| ±3 dB Dynamic Range Center              | -23  | -25  | -24  | -22  | -20  | -15  | -15  | dBm   |
| Log Error Over Temperature (-40 to +85) | ±1   | ±1   | ±1   | ±1.5 | ±1.5 | ±1.5 | ±1.5 | dB    |
| Output Intercept                        | -104 | -107 | -109 | -112 | -113 | -108 | -111 | dBm   |
| Output Slope                            | 16.8 | 16.7 | 15.9 | 15.2 | 14.6 | 14.4 | 14.2 | mV/dB |

[1] Video output load should be 1K Ohm or higher.

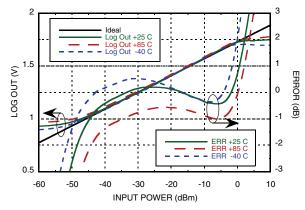




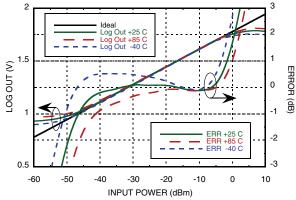

# 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

### **Electrical Specifications**, (continued)

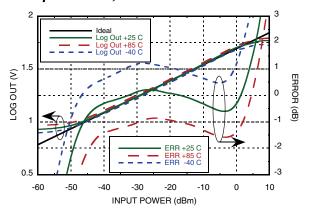
| Parameter                            | Conditions | Min. | Тур. | Max. | Units |
|--------------------------------------|------------|------|------|------|-------|
| LOGOUT Interface                     |            |      |      |      |       |
| Output Voltage Range                 |            | 0.9  |      | 1.8  | V     |
| Output Rise Time [1] / Fall Time [2] | f = 10 GHz |      | 5/7  |      | ns    |
| Power Supply (Vcc)                   |            |      |      |      |       |
| Operating Voltage Range              |            | 3.15 | 3.3  | 3.45 | V     |
| Supply Current in Normal Mode        |            |      | 91   |      | mA    |


<sup>[1] 0</sup> dBm Input Pulsed; measured from 10% to 90%

# LOG OUT & Error vs. Input Power, Fin = 1 GHz




#### R +25 C R +85 C R -40 C


# LOG OUT & Error vs. Input Power, Fin = 10 GHz



### LOG OUT & Error vs. Input Power, Fin = 5 GHz

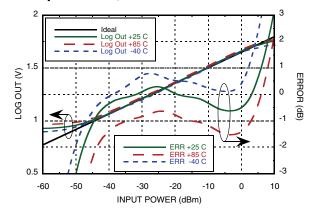


## LOG OUT & Error vs. Input Power, Fin = 14 GHz

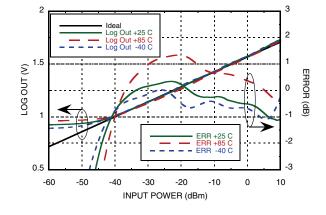


Unless otherwise noted: Vcc = +3.3V,  $T_A = +25$  °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

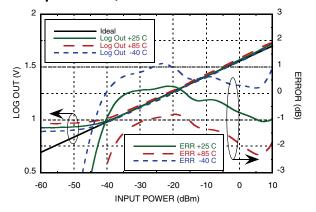

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

<sup>[2] 0</sup> dBm Input Pulsed; measured from 90% to 10%

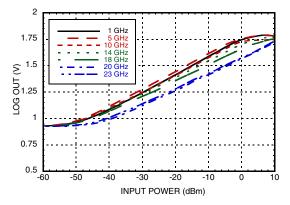





### **LOG OUT & Error** vs. Input Power, Fin = 18 GHz




### **LOG OUT & Error** vs. Input Power, Fin = 23 GHz




### 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

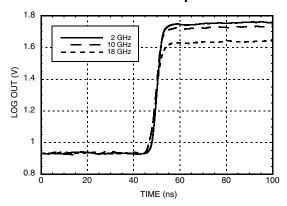
### **LOG OUT & Error** vs. Input Power, Fin = 20 GHz



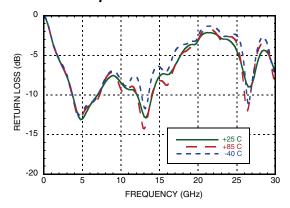
### LOG OUT vs. Frequency








# 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz


### Fall Time for Various Frequencies @ 0 dBm



### Rise Time for Various Frequencies @ 0 dBm



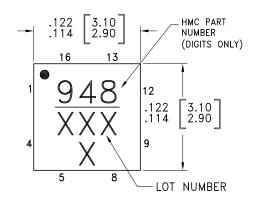
### **Input Return Loss**

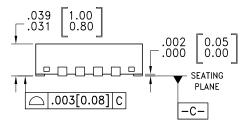


Unless otherwise noted: Vcc = +3.3V,  $T_A = +25$  °C






### 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz


### **Absolute Maximum Ratings**

| Vcc                                                               | +3.6V          |
|-------------------------------------------------------------------|----------------|
| RF Input Power                                                    | +15 dBm        |
| Junction Temperature                                              | 125 °C         |
| Continuous Pdiss (T = 85°C)<br>(Derate 11.62 mW/°C above 85°C)    | 0.46W          |
| Thermal Resistance (R <sub>th</sub> ) (junction to ground paddle) | 86.09 °C/W     |
| Storage Temperature                                               | -65 to +150 °C |
| Operating Temperature                                             | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                             | Class 1A       |



### **Outline Drawing**





## BOTTOM VIEW -.016 [0.40] REF 0.30 0.18 .008 [0.20] MIN PIN 1 1.56 1.44 **EXPOSED GROUND PADDLE SQUARE**

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HMC APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

### **Package Information**

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [1] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC948LP3E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>948</u><br>XXX   |

<sup>[1] 4-</sup>Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

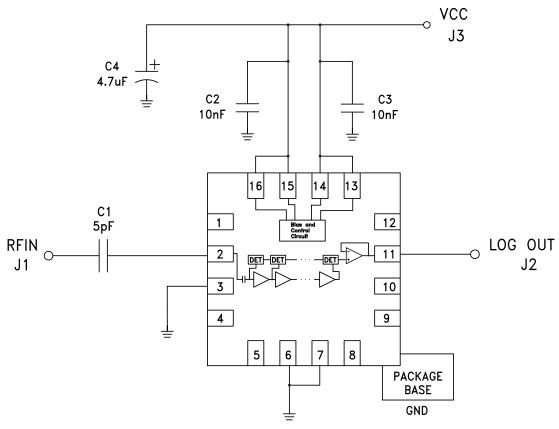
<sup>[2]</sup> Max peak reflow temperature of 260 °C





# 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

### **Pin Descriptions**


| Pin Number               | Function | Description                                                                                                                                                     | Interface Schematic |  |
|--------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| 1, 4, 5, 8, 9,<br>10, 12 | N/C      | No connection necessary. These pins may be connected to RF/DC ground without affecting performance.                                                             |                     |  |
| 2                        | RFIN     | RF input pin.                                                                                                                                                   | RFIN                |  |
| 3, 6, 7                  | GND      | These pins and the exposed package bottom must be connected to a high quality RF/DC ground.                                                                     | GND<br>=            |  |
| 11                       | LOG OUT  | Log out load should be at least 1K Ohm or higher.                                                                                                               | Vcc LOG OUT         |  |
| 13 - 16                  | Vcc      | Bias Supply. Connect supply voltage to<br>these pins with appropriate filtering.<br>To ensure proper start-up supply rise time<br>should be faster than 100usec | Vcc O ESD           |  |

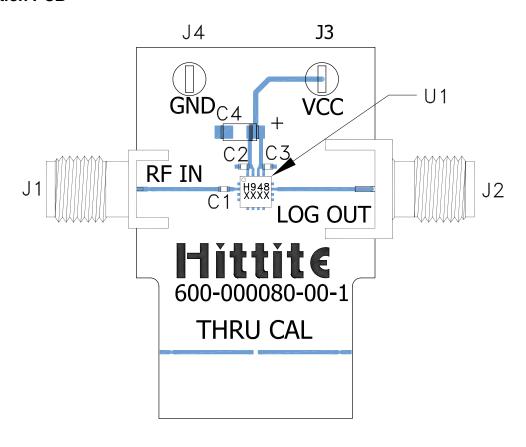
POWER DETECTORS - SMT

v02.0913

### 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

### **Application & Evaluation PCB Schematic**




Note: Log output load should be 1K Ohm or higher.





# 54 dB, LOGARITHMIC DETECTOR, 1 - 23 GHz

#### **Evaluation PCB**



#### List of Materials for Evaluation PCB 132032 [1]

| Item    | Description                            |
|---------|----------------------------------------|
| J1      | K-Type Connector                       |
| J2      | SMA Connector                          |
| J3, J4  | DC Pin                                 |
| C1      | 5 pF Capacitor, 0402 Pkg.              |
| C2, C3  | 10 nF Capacitor, 0402 Pkg.             |
| C4      | 4.7 μF Tantalum Capacitor, CASE A Pkg. |
| U1      | HMC948LP3E Log Detector                |
| PCB [2] | 600-00008-00 Evaluation PCB            |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25 FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the pckage ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.