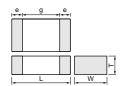
Chip Monolithic Ceramic Capacitors for Automotive



for Automotive GCM Series

■ Features

- 1. The GCM series meet AEC-Q200 requirements.
- Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GCM18/21/31 type only).
- 3. The operating temperature range of R7/C7/5C series: -55 to 125 degrees C, and R9/L8/5G series: -55 to 150 degrees C.
- A wide selection of sizes is available, from miniature LxWxT:0.6x0.3x0.3mm to LxWxT: 3.2x2.5x2.5mm.
- 5. The GCM series is available in paper or embossed tape and reel packaging for automatic placement.
- 6. The GCM series is lead free product.

Part Number		Dime	ensions (mn	n)		
Part Number	L	W	T	е	g min.	
GCM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GCM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GCM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GCM216			0.6 ±0.1			
GCM219	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	0.2 to 0.7	0.7	
GCM21B			1.25 ±0.15			
GCM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1			
GCM31M	3.2 ±0.13	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8	1.5	
GCM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GCM32N			1.35 ±0.15		2.0	
GCM32R	3.2 ±0.3	2.5 ±0.2	1.8 ±0.2	0.3	2.0	
GCM32D	3.2 ±0.3	2.5 <u>T</u> 0.2	2.0 ±0.2	0.3	1.0	
GCM32E			2.5 ±0.2			

^{*} Bulk Case : 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

■ Applications

Automotive electronic equipment (Power-train, safety equipment)

Temperature Compensating Type GCM15 Series

Part Number	GCM15
L x W [EIA]	1.00x0.50 [0402]
тс	C0G (5C)
Rated Volt.	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)
0.50pF(R50)	0.50 (5)
0.75pF(R75)	0.50 (5)
1.0pF(1R0)	0.50 (5)
1.2pF(1R2)	0.50 (5)
1.5pF(1R5)	0.50 (5)
1.8pF(1R8)	0.50 (5)
2.0pF(2R0)	0.50 (5)
2.2pF(2R2)	0.50 (5)
2.7pF(2R7)	0.50 (5)
3.0pF(3R0)	0.50 (5)
3.3pF(3R3)	0.50 (5)
3.9pF(3R9)	0.50 (5)
4.0pF(4R0)	0.50 (5)
4.7pF(4R7)	0.50 (5)
5.0pF(5R0)	0.50 (5)
5.6pF(5R6)	0.50 (5)
6.0pF(6R0)	0.50 (5)
6.8pF(6R8)	0.50 (5)
7.0pF(7R0)	0.50 (5)
8.0pF(8R0)	0.50 (5)
8.2pF(8R2)	0.50 (5)
9.0pF(9R0)	0.50 (5)
10pF(100)	0.50 (5)

Continued on the following page. $\boxed{\ \ \ }$

Ontinued from the preceding page.

Part Number	GCM15
L x W [EIA]	1.00x0.50 [0402]
тс	C0G (5C)
Rated Volt.	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)
12pF(120)	0.50(5)
15pF(150)	0.50 (5)
18pF(180)	0.50 (5)
22pF(220)	0.50 (5)
27pF(270)	0.50 (5)
33pF(330)	0.50 (5)
39pF(390)	0.50 (5)
47pF(470)	0.50 (5)
56pF(560)	0.50 (5)
68pF(680)	0.50 (5)
82pF(820)	0.50 (5)
100pF(101)	0.50 (5)
120pF(121)	0.50 (5)
150pF(151)	0.50 (5)
180pF(181)	0.50 (5)
220pF(221)	0.50 (5)
270pF(271)	0.50 (5)
330pF(331)	0.50 (5)
390pF(391)	0.50 (5)
470pF(471)	0.50 (5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM18 Series

Part Number		GC	M18	_
L x W [EIA]		1.60x0.8	80 [0603]	
тс	C0 (5	0G C)	X8 (5	3G G)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)	
0.50pF(R50)	0.80 (8)	0.80(8)		
0.75pF(R75)	0.80 (8)	0.80(8)		
1.0pF(1R0)	0.80(8)	0.80(8)		
1.2pF(1R2)	0.80(8)	0.80(8)		
1.5pF(1R5)	0.80(8)	0.80(8)		
1.8pF(1R8)	0.80(8)	0.80(8)		
2.0pF(2R0)	0.80(8)	0.80(8)		
2.2pF(2R2)	0.80(8)	0.80(8)		
2.7pF(2R7)	0.80(8)	0.80(8)		
3.0pF(3R0)	0.80 (8)	0.80(8)		
3.3pF(3R3)	0.80(8)	0.80(8)		
3.9pF(3R9)	0.80(8)	0.80(8)		
4.0pF(4R0)	0.80(8)	0.80(8)		
4.7pF(4R7)	0.80(8)	0.80(8)		
5.0pF(5R0)	0.80(8)	0.80(8)		
5.6pF(5R6)	0.80(8)	0.80(8)		
6.0pF(6R0)	0.80(8)	0.80(8)		
6.8pF(6R8)	0.80(8)	0.80(8)		
7.0pF(7R0)	0.80(8)	0.80(8)		

muRata

Continued on the following page.

6

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Part Number	GCM18											
L x W [EIA]		1.60x0.8	80 [0603]									
тс	C0 (5 0	G D)	X8G (5G)									
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)								
Capacitance (Capacit	ance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)									
8.0pF(8R0)	0.80(8)	0.80(8)										
8.2pF(8R2)	0.80(8)	0.80(8)										
9.0pF(9R0)	0.80(8)	0.80(8)										
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
12pF(120)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
15pF(150)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
18pF(180)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
22pF(220)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
27pF(270)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
33pF(330)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
39pF(390)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
47pF(470)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
56pF(560)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
68pF(680)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)								
82pF(820)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
100pF(101)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
120pF(121)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
150pF(151)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
180pF(181)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
220pF(221)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
270pF(271)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
330pF(331)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
390pF(391)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
470pF(471)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
560pF(561)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
680pF(681)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
820pF(821)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
1000pF(102)	0.80(8)	0.80(8)	0.80(8)	0.80(8)								
1200pF(122)		0.80(8)		0.80(8)								
1500pF(152)		0.80(8)		0.80(8)								
1800pF(182)		0.80(8)		0.80(8)								
2200pF(222)		0.80(8)		0.80(8)								
2700pF(272)		0.80(8)		0.80(8)								

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM21 Series

Part Number	GCM21												
L x W [EIA]	2.00x1.25 [0805]												
тс		OG C)		3G G)									
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)									
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimer	sion part numbering code)										
7.0pF(7R0)	0.85 (9)	0.60(6)											
8.0pF(8R0)	0.85 (9)	0.60(6)											
8.2pF(8R2)	0.85 (9)	0.60(6)											
9.0pF(9R0)	0.85 (9)	0.60(6)											
10pF(100)	0.85 (9)	0.60(6)											
12pF(120)	0.85(9)	0.60(6)											

Ontinued from the preceding page.

Part Number	GCM21 2.00x1.25 [0805]												
L x W [EIA]													
тс	C00 (5C	G ()	X8G (5G)										
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)									
Capacitance (Capacit	ance part numbering code) a	and T (mm) Dimension (T Dime	ension part numbering code)										
15pF(150)	0.85 (9)	0.60 (6)											
18pF(180)	0.85 (9)	0.60(6)											
22pF(220)	0.85(9)	0.60(6)											
27pF(270)	0.85(9)	0.60(6)											
33pF(330)	0.85(9)	0.60(6)											
39pF(390)	0.85(9)	0.60(6)											
47pF(470)	0.85(9)	0.60(6)											
56pF(560)	0.85(9)	0.60(6)											
68pF(680)	0.85(9)	0.60(6)											
82pF(820)	0.85(9)	0.60(6)											
100pF(101)	0.60(6)	0.60(6)	0.60(6)	0.60 (6)									
120pF(121)	0.60(6)	0.60(6)	0.60(6)	0.60 (6)									
150pF(151)	0.60(6)	0.60 (6)	0.60(6)	0.60 (6)									
180pF(181)	0.60(6)	0.60 (6)	0.60(6)	0.60(6)									
220pF(221)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
270pF(271)	0.60(6)	0.60(6)	0.60(6)	0.60 (6)									
330pF(331)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
390pF(391)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
470pF(471)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
560pF(561)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
680pF(681)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
820pF(821)	0.60(6)	0.60(6)	0.60(6)	0.60(6)									
1000pF(102)	0.85 (9)	0.60(6)	0.85(9)	0.60(6)									
1200pF(122)	0.85 (9)	0.60(6)	0.85(9)	0.60(6)									
1500pF(152)	0.85(9)	0.60(6)	0.85(9)	0.60(6)									
1800pF(182)	.,	0.60(6)		0.60(6)									
2200pF(222)		0.60(6)		0.60(6)									
2700pF(272)		0.60(6)		0.60(6)									
3300pF(332)		0.60(6)		0.60(6)									
3900pF(392)		0.60(6)		0.60(6)									
4700pF(472)		0.60(6)		0.60(6)									
5600pF(562)		0.85(9)		0.85(9)									
6800pF(682)		0.85(9)		0.85(9)									
8200pF(822)		0.85(9)		0.85(9)									
10000pF(103)		0.85(9)		0.85(9)									

The part numbering code is shown in (). Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM31 Series

Part Number	GCM31												
L x W [EIA]	3.20x1.0	60 [1206]											
тс		COG (5C)											
Rated Volt.	100 (2A)	50 (1H)											
Capacitance (Ca	apacitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)											
12pF(120)	0.85(9)												
15pF(150)	0.85(9)												
18pF(180)	0.85(9)												
22pF(220)	0.85(9)												

Continued on the following page.

muRata

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Part Number		GCM31							
L x W [EIA]		3.20x1.60 [1206]							
тс	C0G (5C)								
Rated Volt.	100 (2A)	50 (1H)							
Capacitance (Capacitan	ce part numbering code) and T (mm) Dimensi	on (T Dimension part numbering code)							
27pF(270)	0.85 (9)								
33pF(330)	0.85 (9)								
39pF(390)	0.85 (9)								
47pF(470)	0.85 (9)								
56pF(560)	0.85 (9)								
68pF(680)	0.85 (9)								
82pF(820)	0.85 (9)								
100pF(101)	0.85 (9)								
120pF(121)	0.85 (9)								
150pF(151)	0.85 (9)								
180pF(181)	0.85 (9)								
220pF(221)	0.85 (9)								
270pF(271)	0.85 (9)								
330pF(331)	0.85(9)								
390pF(391)	0.85(9)								
470pF(471)	0.85(9)								
560pF(561)	0.85(9)	0.60(6)							
680pF(681)	0.85(9)	0.60(6)							
820pF(821)	1.15(M)	0.85(9)							
1000pF(102)	0.85(9)	0.85(9)							
1200pF(122)	0.85(9)	0.85(9)							
1500pF(152)	0.85(9)	0.85(9)							
1800pF(182)	0.85(9)	0.85(9)							
2200pF(222)	0.85(9)	0.85(9)							
2700pF(272)	0.85(9)	0.85(9)							
3300pF(332)	0.85(9)	0.85(9)							
3900pF(392)	0.85(9)	0.85(9)							
4700pF(472)	0.85(9)	0.85(9)							
5600pF(562)	0.85(9)	0.85(9)							
6800pF(682)		0.85(9)							
8200pF(822)		0.85(9)							
10000pF(103)		0.85(9)							
12000pF(123)		0.85(9)							
15000pF(153)		0.85(9)							
18000pF(183)		0.85(9)							
22000pF(223)		0.85(9)							

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type, X7R (R7) Characteristics

тс		X7R (R7)																				
Part Number	GCM15				GCM18				GCM21				GCM31					GCM32				
L x W [EIA]	1.00x0.50 [0402]				1.60x0.80 [0603]				2.00x1.25 [0805]				3.20x1.60 [1206]					3.20x2.50 [1210]				
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	ance p	art nu	mberi	ng co	de) an	d T (m	nm) Di	mensi	on (T	Dimen	sion p	art nu	mberi	ng co	de)						
220pF (221)	0.50 (5)	0.50 (5)																				

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product any in it is possible.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product specifications before ordering.

Continued from the preceding page.

тс	X7 (R7																					
Part Number		GC	M15		GCM18				GCM21						-	GCM3	1			GC	W32	
L x W [EIA]	1.0	0x0.5	0 [04	02]	1.6	3.0x0.	060	03]		2.00x	1.25 [0805]			3.20x	1.60 [1206]		3.2	20x2.5	0 [12	10]
Rated Volt.	100 (2A)	50 (1H)		16 (1C)		50 (1H)		16 (1C)			25 (1E)			100 (2A)			16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	·	T -	art nu	ımberi 	ng co	de) an	d T (m	nm) Di	mensi 	on (T	Dimen	sion p	art nu	ımberi 	ng co	de)						
330pF (331)	0.50 (5)	(5)																				
470pF (471)	0.50 (5)	0.50 (5)																				
680pF (681)	0.50 (5)	0.50 (5)																				
1000pF (102)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
1500pF (152)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
2200pF (222)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
3300pF (332)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
4700pF (472)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
6800pF (682)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
10000pF (103)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
15000pF (153)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)		0.60 (6)	0.60 (6)												
22000pF (223)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)		0.60 (6)	0.60 (6)												
33000pF (333)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)		0.85 (9)	0.85 (9)												
47000pF (473)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)												
68000pF (683)				0.50 (5)		0.80 (8)		0.80	1.25 (B)	1.25 (B)												
0.10μF (104)				0.50 (5)		0.80 (8)		0.80 (8)	1.25 (B)	1.25 (B)				0.85 (9)	1.15 (M)							
0.15μF (154)							0.80 (8)			1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)							
0.22μF (224)							0.80 (8)			1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)	0.85 (9)						
0.33μF (334)								0.80 (8)		0.85 (9)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)						
0.47μF (474)							0.80 (8)	0.80		1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)						
0.68μF (684)											1.25 (B)											
1.0μF (105)											1.25 (B)					1.15 (M)			2.50 (E)			
 1.5μF (155)												1.25 (B)			1.60 (C)	1.15 (M)						
2.2μF (225)											1.25 (B)	1.25 (B)	1.25 (B)		1.60 (C)	1.15 (M)				2.50 (E)		
3.3μF (335)												1.25 (B)				1.15 (M)						
4.7μF (475)												. ,				1.60 (C)	1.60 (C)					

muRata

Continued on the following page.

10

⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our

This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering

A	Continued fron	n the preceding p	oage.
---	----------------	-------------------	-------

тс		X7R (R7)																				
Part Number		GC	M15			GCI	M18			(GCM2	1			(GCM3	1			GC	W32	
L x W [EIA]	1.0	00x0.5	50 [04	02]	1.6	3.0x0	30 [06	03]		2.00x	1.25 [0805]			3.20x	1.60 [1206]		3.2	20x2.5	0 [12	10]
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	ance p	art nu	mberi	ng co	de) an	d T (m	nm) Di	mensi	on (T I	Dimen	sion p	art nu	mberi	ng co	de)				<u>'</u>		
6.8μF (685)																		1.60 (C)				
10μF (106)																		1.60 (C)			2.00 (D)	
22μF (226)																						2.50 (E)

The part numbering code is shown in $\ (\).$

High Dielectric Constant Type, X7S (C7) Characteristics

тс	X7S (C7)					
Part Number	GC	M18	GCM21			
L x W [EIA]	1.60x0.8	30 [0603]	2.00x1.25 [0805]			
Rated Volt.	16 (1C)	10 (1A)	10 (1A)			
Capacitance (Ca	pacitance part numbering code) and T (mm	n) Dimension (T Dimension part numbering o	code)			
0.68μF(684)	0.80(8)					
1.0μF(105)	0.80(8)	0.80(8)				
4.7μF(475)			1.25(B)			

The part numbering code is shown in ().

High Dielectric Constant Type, X8L (L8) Characteristics

тс	X8L (L8)					
Part Number	GCN	M18	GC	M21	GCI	M 31
L x W [EIA]	1.60x0.8	0 [0603]	2.00x1.	25 [0805]	3.20x1.6	0 [1206]
Rated Volt.	50 16 (1H) (1C)		50 (1H)			16 (1C)
Capacitance (Cap	pacitance part numbe	ering code) and T (mm) Dimension (T Dimer	nsion part numbering o	code)	
15000pF(153)	0.80(8)					
22000pF(223)	0.80(8)					
33000pF(333)	0.80(8)					
47000pF(473)	0.80(8)					
68000pF(683)	0.80(8)		1.25(B)			
0.10μF(104)	0.80(8)		1.25(B)		1.15(M)	
0.15μF(154)		0.80(8)	1.25(B)		1.15(M)	
0.22μF(224)		0.80(8)	1.25(B)		1.15(M)	
0.33μF(334)			1.25(B)	1.25(B)	1.15(M)	
0.47μF(474)				1.25(B)	1.15(M)	
0.68μF(684)				1.25(B)	1.60(C)	
1.0μF(105)				1.25(B)	1.60(C)	
1.5μF(155)						1.15(M)
2.2μF(225)						1.15(M)

The part numbering code is shown in $% \left(1\right) =\left(1\right) =\left(1\right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

The tolerance will be changed to L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15 for GCM31 25V 2.2 μ F type.

Dimensions are shown in mm and Rated Voltage in Vdc.

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type, X8R (R9) Characteristics

тс		X8R (R9)	
Part Number	GCM18	GCM21	GCM31
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]
Rated Volt.	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm	n) Dimension (T Dimension part numbering	ı code)
33000pF(333)	0.80(8)		
47000pF(473)	0.80(8)		
68000pF(683)		1.25(B)	
0.10μF(104)		1.25(B)	
0.15μF(154)			1.15(M)
0.22μF(224)			1.15(M)
0.33μF(334)			1.15(M)

The part numbering code is shown in (). Dimensions are shown in mm and Rated Voltage in Vdc.

N/ -	AEC-	Q200	Specifi	cations	AFC COORT I Malland		
No.	Test	Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method		
1	1 Pre-and Post-Stress Electrical Test				- -		
	High Tem Exposure		The measured and observed ch specifications in the following ta	•			
		Appearance	No marking defects				
2		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2		
-		Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.03 max. W.V.: 16V: 0.05 max.	hours at room temperature, then measure.		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1			
	Temperat Cycle	ure	The measured and observed ch specifications in the following ta		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 1000 cycles		
		Appearance	No marking defects		according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Step 1 2 3 4 T (CO) FF OLD Room 125+3/-0 (ΔC/R7/C7) Room		
3		Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.03 max. W.V.: 16V: 0.05 max.	Temp. (°C) -55+0/-3 Temp. 150+3/-0 (L8/R9/5G) Temp. Time (min.) 15±3 1 15±3 1		
		I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)		• Initial measurement for high dielectric constant type Perform a heat treatment at 150 ± ♀₀°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.		
4	Destructive Physical Analysis		No defects or abnormalities		Per EIA-469		
	Moisture Resistance	Moisture The measured and observed characteristics shows specifications in the following table.			Apply the 24-hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.		
		Appearance	No marking defects		Let sit for 24±2 hours at room temperature, then measure.		
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	Humidity Humidity Humidity Humidity °C 90-98% 80-98% 90-98% 80-98% 90-98% 70		
5		Q/D.F.	30pFmin. : Q≧350 10pF and over, 30pF and below: Q≧275+ ½ C 10pFmax. : Q≥200+10C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	66 60 65 90 45 46 935 930 825 920		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	*1 F	15 Initial measurement Initial measurem		
	Biased H	umidity	The measured and observed ch specifications in the following ta				
		Appearance	No marking defects		Apply the rated voltage and 1.3+0.2/-0Vdc (add 6.8k Ω resistor)		
6		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	at 85±3°C and 80 to 85% humidity for 1000±12 hours. Remove and let sit for 24±2 hours at room temperature, then		
		Q/D.F.	30pF and over : Q≧200 30pF and below : Q≧100+ ¹ / ₃ ° C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 1,000 Ω or 50 Ω · F (Whichever is smaller)	*1			

$ \mathcal{A} $	Continued fr	om the prec	eding page.		
No	AEC-	Q200	Specifi	cations	AEC-Q200 Test Method
No.	Test	Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test iviethod
	Operation	nal Life	The measured and observed ch specifications in the following ta		
		Appearance	No marking defects		Apply 200% of the rated voltage for 1000±12 hours at
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger) Within ±12.5%		125±3°C. Let sit for 24±2 hours at room temperature, then measure. *2 The charge/discharge current is less than 50mA.
7		Q/D.F.	30pFmin.: Q≥350 10pF and over, 30pF and below: Q≥275+ ½ C 10pFmax.: Q≥200+10C C: Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement. *2
		I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)	*1	
8	External \	Visual	No defects or abnormalities		Visual inspection
9	Physical [Dimension	Within the specified dimensions		Using calipers
		Appearance	No marking defects		
		Capacitance Change	Within the specified tolerance		Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits
10	Resistance to Solvents	Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water 1 part (by volume) of propylene glycol
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	monomethylether 1 part (by volume) of monoethanolomine
		Appearance	No marking defects		
		Capacitance Change	Within the specified tolerance		Three shocks in each direction should be applied along 3
11	Mechanical Shock	Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	mutually perpendicular axes of the test specimen (18 shocks). The specified test pulse should be Half-sine and should have a duration: 0.5ms, peak value: 1500g and velocity change: 4.7m/s.
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	
		Appearance	No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board) in the
		Capacitance Change	Within the specified tolerance		same manner and under the same conditions as (19). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied
12	Vibration	Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).
	Resistand		The measured and observed ch specifications in the following ta	•	
		Appearance	No marking defects		Immerse the capacitor in a eutectic solder solution at 260±5°C for 10±1 seconds. Let sit at room temperature for 24±2 hours, then
13		Capacitance Change	Within the specified tolerance		measure.
13		Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	• Initial measurement for high dielectric constant type Perform a heat treatment at 150 ± 0 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	

	AEC-	-Q200	Specifi	cations	450 0000 5 0000			
No.		Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
	Thermal S	Shock	The measured and observed ch specifications in the following ta	•	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 300 cycles			
		Appearance	No marking defects		according to the two heat treatments listed in the following to (Maximum transfer time is 20 seconds). Let sit for 24±2 hou	-		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	room temperature, then measure.			
14		Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V.: 25Vmin.: 0.025 max. W.V.: 16V: 0.035 max.	Step 1 2 Temp. (°C) -55+0/-3 125+3/-0 (5C, C7, R7) 150+3/-0 (L8, R9 Time (min.) 15±3 15±3 Initial measurement for high dielectric constant type	R9, 5G)		
		I.R.	More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	Perform a heat treatment at 150 ^{±0} ₁₀ °C for one hour and let sit for 24±2 hours at room temperature. Perform the initial measurement.	nd then		
		Appearance	No marking defects					
		Capacitance Change	Within the specified tolerance					
15	ESD	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Per AEC-Q200-004			
		I.R.	More than $10,000M\Omega$ or 500Ω · (Whichever is smaller)	F *1				
					(a) Preheat at 155°C for 4 hours. After preheating, immerse capacitor in a solution of ethanol (JIS-K-8101) and rosin K-5902) (25% rosin in weight proportion). Immerse in ethanol color solution for 5+0/-0.5 seconds at 235±5°C.	sin (JIS- eutection		
16	Solderab	ility	95% of the terminations is to be continuously.	soldered evenly and	(b) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C.			
		Appearance	No defects or abnormalities					
		Capacitance Change	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table.			
					(1) Temperature Compensating Type			
				*1	Capacitance Frequency Voltage C≦1000pF 1±0.1MHz 0.5 to 5Vrn			
			30pF min. : Q≧1000	W.V. : 25V min. : 0.025 max.	C>1000pF 1±0.1kHz 0.5 to 5 vm			
		Q/D.F.	30pF max. : Q≥400+20C	W.V.: 16V: 0.035 max	(2) High Dielectric Type			
			C : Nominal Capacitance (pF)		Capacitance Frequency Voltage	je		
					C≤10μF 1±0.1kHz 1±0.2Vrm C>10μF 120±24Hz 0.5±0.1Vrn			
17	Electrical Chatacteri- zation		25°C More than 100,000MΩ or 1,000Ω \cdot F (Whichever is smaller)	*1 25°C More than 10,000MΩ or 500Ω · F (Whichever is smaller)		-		
		I.R.	Max. Operating Temperature125°C More than 10,000M Ω or 100 Ω · F (Whichever is smaller)	Max. Operating Temperature···125°C More than 1,000M Ω or 10 Ω · F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C and within a minutes of charging.			
			Max. Operating Temperature···150°C More than 10,000M Ω or 100 Ω · F (Whichever is smaller)	Max. Operating Temperature \cdots 150°C More than 1,000M Ω or 1 Ω · F (Whichever is smaller)				
		Dielectric Strength			No failure should be observed when 250% of the rated volt applied between the terminations for 1 to 5 seconds, provid charge/discharge current is less than 50mA.	-		

Continued from the preceding page.							
AEC-	O200	Specifi	cations				
		Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
	Appearance	No marking defects		Solder the capacitor on the test jig (glass epoxy board) shown in			
	Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10.0%	Fig. 1 using a eutectic solder. Then apply a force in the direction shown in Fig. 2 for 5±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted			
	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	with care so that the soldering is uniform and free of defects such as heat shock.			
Board Flex	I.R.	*1 More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	100 t: 1.6mm (GCM15: 0.8mm)	Type a b c GCM15 0.5 1.5 0.6 GCM18 0.6 2.2 0.9 GCM21 0.8 3.0 1.3 GCM31 2.0 4.4 1.7 GCM32 2.0 4.4 2.6 (in mm) Pressurzing speed: 1.0mm/sec Pressurize Capacitance meter 45 Flexure: ≤2 (High Dielectric Type) Flexure: ≤3 (Temperature Compensating Type) Fig. 2			
	Appearance	No marking defects		Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 3 using a eutectic solder. Then apply *18N force in parallel			
	Capacitance Change	Within the specified tolerance		with the test jig for 60sec.			
	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *2N (GCM15)			
Terminal Strength I.R.		More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	*1 F	Type a b c GCM15 0.4 1.5 0.5 GCM18 1.0 3.0 1.2 GCM21 1.2 4.0 1.65 GCM31 2.2 5.0 2.0 GCM32 2.2 5.0 2.9 (in mm)			
The chip endure following force. < Chip L dimension: 2.5mm max. > Chip thickness > 0.5mm rank: 20N Chip thickness ≤ 0.5mm rank: 8N < Chip L dimension: 3.2mm min. > Chip L dimension: 3.2mm min. > Chip thickness < 1.25mm rank: 15N Chip thickness ≥ 1.25mm rank: 54.5N		Place the capacitor in the beam load fixture as Fig. 4. Apply a force. < Chip Length: 2.5mm max. > Iron Board Speed supplied the Stress Load: 0.5mm / sec. < Chip Length: 3.2mm min. > Fig. 4 Speed supplied the Stress Load: 2.5mm / sec.					
	Board Flex Terminal Strength	Appearance Capacitance Change Q/D.F. Board Flex I.R. Appearance Capacitance Change Q/D.F. Terminal Strength I.R.	Test Item Appearance	Temperature Compensating Type			

muRata

Continued	from the	preceding	page.

	AEC-	· ·	5. S	cations	
No.	Test		Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method
		Change (Table A)	Within the specified tolerance (Table A)	C7: Withn ±22% (-55°C to +125°C) L8: Withn +15/-40% (-55°C to +150°C) R7: Withn ±15% (-55°C to +125°C) R9: Withn ±15% (-55°C to +150°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (ΔC: +25°C to +125°C : other temp. coeffs.: +25°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as shown in Table A. The
		Temperature Coefficent	Within the specified tolerance (Table A)	/	capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps
21	Capacitance Temperature Character- istics	Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger) * Do not apply to 1X/25V		1, 3 and 5 by the capacitance value in step 3. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 (ΔC / R7 / C7), 150±3 (L8 / R9 / 5G) 5 25±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.

Table A

Char.	Nominal Values (ppm/°C) Note1	Capacitance Change from 25°C (%)					
		-55		-30		-10	
		Max.	Min.	Max.	Min.	Max.	Min.
5C/5G	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for 5C)/150°C (for 5G).

^{*1:} The figure indicates typical inspection. Please refer to individual specifications.
*2: Some of the parts are applicable in rated voltage x 150%. Please refer to individual specifications.