								F	REVISI	ONS			ı				1			
LTR						DESCR	IPTIO	٧					DA	TE (YI	R-MO-E	DA)		APPR	OVED	
Р		case o		И. Tech ut.	nical c	hanges	s and c	orrectio	ons to t	able I.	Editoria	al	93-10-02				M. A. FRYE			
R	Add	class V	/ level	devices	. Upda	te boile	erplate.	- ro						99-0	6-08		R. MONNIN			
Т				N. Make gure 1.		ges to 1	1.2.4, P	D, thet	a JC, I _I	_{MAX} as	specifi	ed in		99-0	9-23		R. MONNIN			
U	outlir figure	ne U. <i>F</i> e 1.	Add ter	rdened requirements to device types 02 and 07 for case erminal assignment table for case outline N as specified in 4 for device type 07 ro					00-10-11				R. MONNIN							
V	spec	ified in	se outlines 5 and 6. Make changes to 1.2.4, P _D , theta JC, I _{MAX} as ed in 1.3, table I, and figure 1. Update boilerplate to reflect current ments rrp							03-12-10			R. MONNIN							
W	Add and f	a footn figure 1	ote to	the case	e outline	e U, TC	D-257 p	oackag	e as sp	ecified	under	1.2.4		05-0)2-07			R. MONNIN		
Х	note	3 unde	er figure	T" only, add a footnote 1/ under 1.2.4 and make change to re 1. For device types 02, 04, 07, and 08 add pin outs under figure 1rrp					to ider		06-01-30				R. MONNIN					
Υ	Upda	ate drav	wing to	curren	MIL-P	RF-38	535 rec	uireme	entsr	rp			14-06-12 C. SAFFLE							
THE ORIGINA REV SHEET REV SHEET	Y 35 Y 15	SHEE Y 36 Y 16	Y 37 Y 17	THIS D Y 38 Y 18	RAWIN Y 39 Y 19	Y 40 Y 20	S BEE! Y 41 Y 21	Y 42 Y 22	_ACED Y 43 Y 23	Y 44 Y 24	Y 45 Y 25	Y 26	Y 27	Y 28	Y 29	Y 30	Y 31	Y 32	Y 33	3
REV STATUS		10	17	REV	_	20	Y	Y	23 Y	24 Y	23 Y	20 Y	Y	20 Y	29 Y	30 Y	Y	7 Y	33 Y	3. Y
OF SHEETS	,			SHE			1	2	3	4	5	6	7	8	9	10	11	12	13	1
PMIC N/A PREPARED BY WILLIAM E. SHOUP				<u> </u>	DLA LAND AND MARITIME															
MICR	NDAF OCIRO AWIN	CUIT		С	CKED I	CKSON	l			COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil										
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE			N	. A. HA WING	UCK APPRO	DVAL E	OATE		MICROCIRCUIT, LINEAR, ADJUSTABLE VOLTAGE REGULATOR, MONOLITHIC SILICON											

SIZE

Α

CAGE CODE

67268 SHEET

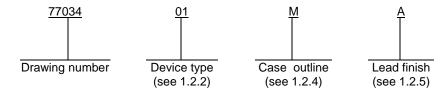
1 OF 45

Υ

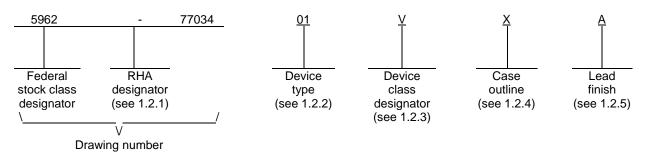
REVISION LEVEL

DSCC FORM 2233 APR 97

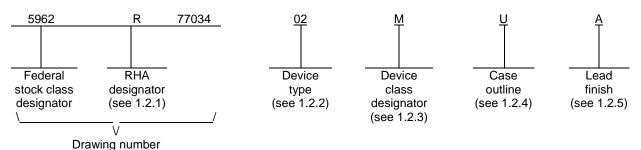
AND AGENCIES OF THE DEPARTMENT OF DEFENSE


AMSC N/A

77034


1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following examples.


For device classes M and Q:

For device class V:

For device classes M, Q, and V radiation hardened devices:

- 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number		Circuit function
01 02 03 04 05 06 07 08	LM117 LM117HV LM137 LM137HV LT117A LT137A LT117AHV LT137AHV	Positive Negative Negative Positive Negative Positive	adjustable voltage regulator adjustable voltage regulator, high voltage adjustable voltage regulator, high voltage adjustable voltage regulator, high voltage adjustable voltage regulator adjustable voltage regulator adjustable voltage regulator, high voltage adjustable voltage regulator, high voltage
STANDA	PD	SIZE	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 2

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as listed below. Since the device class designator has been added after the original issuance of this drawing, device classes M and Q designators will not be included in the PIN and will not be marked on the device.

Device class

Device requirements documentation

Μ

Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A

Q or V

Certification and qualification to MIL-PRF-38535

1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
M	See figure 1	3	Power surface mount
N	See figure 1	3	Surface mount
T <u>1</u> /	See figure 1	3	TO-257 flange mount, glass sealed
U <u>1</u> /	See figure 1	3	TO-257 flange mount with isolated tab, glass sealed
χ –	See figure 1	3	TO-39 can
Υ	MBFM1-P2	2	Flange mount
Z	MBFM4-P2	2	Flange mount
2	CQCC1-N20	20	Square leadless chip carrier
4	See figure 1	3	SMD-257-A flange mount, glass sealed
5	See figure 1	18	Rectangular leadless chip carrier
6	See figure 1	18	Rectangular leadless chip carrier

- 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.
 - 1.3 Absolute maximum ratings. 2/

Power dissipation (P_D):

Case X	2 W
Cases M, N, T, U, Y, Z and 4 (internally limited)	20 W
Case 2:	
At T _A = +25°C	1.1 W
At T _C = +25°C	6.2 W
Cases 5 and 6 at T _C = +25°C	10 W
Input-output voltage differential:	
Device types 01, 03, 05, 06	40 V dc
Device types 02, 07	60 V dc
Device types 04, 08	50 V dc
Operating junction temperature range	-55°C to +150°C
Storage temperature	-65°C to +150°C
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC}) :	
Cases M, N, and T	3.5°C/W
Cases U and 4	4.2°C/W
Case X	15°C/W
Case Y	3°C/W
Case Z	5°C/W
Case 2	See MIL-STD-1835
Cases 5 and 6	13°C/W

- 1/ For outline letters T and U, CAGE 34333 manufactures the TO-257 package with ceramic seal.
- 2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 3

1.3 Absolute maximum ratings – Continued. 2/

Maximum output current (I_{MAX}):

Cases X, 2, 5, and 6	0.5 A
Cases M. N. T. U. Y. Z. and 4	1.5 A

1.4 Recommended operating conditions.

Output voltage	ran	ge:
Davida types	Λ1	ΛE

Device types 01, 05	1.2 to 37 V dc
Device types 02, 07	1.2 to 57 V dc
Device types 03, 06	
Device types 04, 08	-1.2 to -47 V dc
Ambient operating temperature range (T _A)	-55°C to +125°C
Input voltage range:	
Device types 01, 05	4.25 V dc to 41.25 V dc
Device types 03, 06	-4.25 V dc to -41.25 V dc
Device types 02, 07	4.25 V dc to 61.25 V dc

Device types 04, 08 -4.25 V dc to -51.25 V dc

1.5 Radiation features.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

These parts may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions specified in MIL-STD-883, method 1019, condition A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 4

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
- 3.2.3 Radiation exposure circuit. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.
- 3.9 <u>Verification and review for device class M.</u> For device class M, DLA Land and Maritime, DLA Land and Maritime 's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.10 <u>Microcircuit group assignment for device class M.</u> Device class M devices covered by this drawing shall be in microcircuit group number 52 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 5

	Т	ABLE I. Electrical performanc	e characteristic	<u>cs</u> .			
Test	Symbol	$ \begin{array}{c} \text{Conditions} \\ \text{-55}^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \\ \text{I}_{\text{L}} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5 and 6							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	01	1.20	1.30	V
		V _{DIFF} = 3.3 V	2,3	=	1.20	1.30	_
		V _{DIFF} = 40 V	1,2,3	=	1.20	1.30	_
Line regulation	R _{LINE}	$3.0 \le V_{DIFF} \le 40 \text{ V},$ $V_{OUT} = V_{REF}$	1	01		±9	mV
		$3.3 \le V_{DIFF} \le 40 \text{ V},$ $V_{OUT} = V_{REF}$	2,3	-		±23	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 3 V$, 10 mA $\leq I_L \leq 500$ mA	1	01		±15	mV
		$V_{DIFF} = 3.3 \text{ V},$ $10 \text{ mA} \le I_L \le 500 \text{ mA}$	2,3	1		±15	
		$V_{DIFF} = 40V$, 10 mA $\leq I_L \leq 150$ mA	1			±15	
		$V_{DIFF} = 40 \text{ V},$ $10 \text{ mA} \le I_{L} \le 100 \text{ mA}$	2,3	-		±15	
Thermal regulation	V _{RTH}	$V_{IN} = +14.6 \text{ V},$ $I_L = 300 \text{ mA}, t = 20 \text{ ms},$ $P_D = 4 \text{ W}, T_A = +25 ^{\circ}\text{C}$	1	01		±3.1	mV
Ripple rejection	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \text{ μF},$ $V_{OUT} = V_{REF} 2/$	4,5,6	01	66		dB
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1	01		100	μА
		V _{DIFF} = 3.3 V	2,3	-		100	
		V _{DIFF} = 40 V	1,2,3	-		100	
Adjustment pin current change	ΔI_{ADJ}	$V_{DIFF} = 3 \text{ V},$ $10 \text{ mA} \le I_L \le 500 \text{ mA}$	1	01		±5	μА
		$V_{DIFF} = 3.3 \text{ V},$ $10 \text{ mA} \le I_L \le 500 \text{ mA}$	2,3			±5	
		V _{DIFF} = 40 V,	1	1		±5	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 6

 $10~mA \leq I_L \leq 150~mA$

 $10~mA \leq I_L \leq 100~mA$

 $V_{DIFF} = 40 \text{ V},$

2,3

±5

Test Syn		Conditions $-55^{\circ}C \le T_A \le +125^{\circ}C$		Device	Limits		Unit	
]	$I_L = 8 \text{ mA}$	subgroups	type				
Cases X, 2, 5 and 6 - Cont	inuad	unless otherwise specified			Min	Max		
24565 A, Z, 5 and 6 - Cont	iriuea.							
Adjustment pin current	ΔI_{ADJ}	$3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1	01		±5	μА	
change		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,3			±5		
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$,	1	01		5	mA	
		V _{OUT} = 1.4 V (forced)						
		$V_{DIFF} = 3.3 V$,	2,3	1		5		
		V _{OUT} = 1.4 V (forced)						
		$V_{DIFF} = 40 \text{ V},$	1,2,3			5		
		$V_{OUT} = 1.4 \text{ V (forced)}$						
Current limit 2/	I _{CL}	V _{DIFF} = 15 V	1,2,3	01	0.5	1.65	Α	
		V _{DIFF} = 40 V	1		0.15	0.65		
Cases M, N, T, U, Y, Z								
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	01	1.20	1.30	V	
		V _{DIFF} = 3.3 V	2,3		1.20	1.30		
		V _{DIFF} = 40 V	1,2,3		1.20	1.30		
ine regulation	R _{LINE}	V _{OUT} = V _{REF} ,	1	01		±9	mV	
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						
		$V_{OUT} = V_{REF},$	2,3			±23		
		3.3 V ≤ VDIFF ≤ 40 V						
oad regulation 1/	R _{LOAD}	$V_{DIFF} = 3 V$,	1	01		±15	mV	
		$10~\text{mA} \leq I_L \leq 1.5~\text{A}$						
		V _{DIFF} = 3.3 V,	2,3			±15		
		$10~\text{mA} \leq I_L \leq 1.5~\text{A}$						
		$V_{DIFF} = 40V$,	1			±15		
		$10~\text{mA} \leq I_L \leq 300~\text{mA}$						
		$V_{DIFF} = 40 \text{ V},$	2,3			±15		
		$10 \text{ mA} \le I_L \le 195 \text{ mA}$						
Thermal regulation	V _{RTH}	V _{IN} = 14.6 V, I _L = 1.5 A,	1	01		±16	mV	
		$P_D = 20 \text{ watts, t} = 20 \text{ ms,}$					1	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 7

Test	Symbol	$ \begin{array}{c} \text{Conditions} \\ \text{-55°C} \leq \text{T}_{\text{A}} \leq \text{+125°C} \\ \text{I}_{\text{L}} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z - Co	ontinued.						
Ripple rejection	R _N	$f = 120$ Hz, $C_{ADJ} = 10$ μF, $V_{OUT} = V_{REF}$ $2/$	4,5,6	01	66		dB
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1	01		100	μА
		V _{DIFF} = 3.3 V	2,3			100	
		V _{DIFF} = 40 V	1,2,3			100	
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	01		±5	μΑ
change		10 mA $\leq I_L \leq 1.5 \text{ A}$					'
		V _{DIFF} = 3.3 V,	2,3	1		±5	1
		10 mA ≤ I _L ≤ 1.5 A					_
		$V_{DIFF} = 40 \text{ V},$ $10 \text{ mA} \le I_L \le 300 \text{ mA}$	1			±5	
		$V_{\text{DIFF}} = 40 \text{ V},$	2,3	=		±5	
		$10~\text{mA} \leq I_L \leq 195~\text{mA}$					
		$3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1			±5	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,3			±5	
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 \text{ V},$ $V_{OUT} = 1.4 \text{ V (forced)}$	1	01		5	mA
		$V_{DIFF} = 3.3 V$,	2,3			5	
		V _{OUT} = 1.4 V (forced)					-
		V _{DIFF} = 40 V,	1,2,3			5	
		V _{OUT} = 1.4 V (forced)					
Current limit 2/	I _{CL}	V _{DIFF} = 15 V	1,2,3	01	1.50	3.50	Α
		V _{DIFF} = 40 V	1		0.18	1.5	
Cases X, 2, 5, and 6							L
Reference voltage	V _{REF}	V _{DIFF} = 3.0 V	1	02	1.20	1.30	V
		V _{DIFF} = 3.3 V	2,3	1	1.20	1.30	1
		V _{DIFF} = 40 V	1,2,3	1	1.20	1.30	1
		V _{DIFF} = 60 V	1,2,3	-	1.20	1.30	1
ee footnotes at end of table).						
	ANDARD		ZE A				77034
MICROCIR DLA LAND	CUIT DRAV AND MARITI	VIIIO		/ISION LEVE		SHEET	
	, OHIO 43218-	1			-		

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +125^{\circ}C$ $I_L = 8 \text{ mA}$	Group A subgroups	Device type	-		Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6 - Cont	inued.						
Line regulation 3/	R _{LINE}	$V_{OUT} = V_{REF},$ $3.0 \text{ V} \le V_{DIFF} \le 40 \text{ V}$	1	02		±9	mV
		$V_{OUT} = V_{REF},$ $3.3 \text{ V} \leq V_{DIFF} \leq 40 \text{ V}$	2,3			±23	
		$V_{OUT} = V_{REF},$	1			±5	
		$40 \text{ V} \le V_{DIFF} \le 60 \text{ V}$	2,3	1		±10	1
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 3 V$, 10 mA $\leq I_L \leq 500$ mA	1	02		±15	mV
		$V_{DIFF} = 3.3 \text{ V},$ $10 \text{ mA} \le I_{L} \le 500 \text{ mA}$	2,3	=		±15	
		$V_{DIFF} = 40V$, 10 mA $\leq I_{L} \leq 150$ mA	1	-		±15	
		$V_{DIFF} = 40 \text{ V},$ $10 \text{ mA} \le I_L \le 100 \text{ mA}$	2,3	_		±15	
		$V_{DIFF} = 60 \text{ V},$ $10 \text{ mA} \le I_{L} \le 20 \text{ mA}$	1,2,3	_		±15	_
Thermal regulation	V _{RTH}	$V_{IN} = 14.6 \text{ V},$ $I_{L} = 300 \text{ mA}, t = 20 \text{ ms},$ $P_{D} = 4 \text{ W}, T_{A} = +25^{\circ}\text{C}$	1	02		±3.1	mV
Ripple rejection 2/	R _N	$f = 120$ Hz, $C_{ADJ} = 10 \mu F$, $V_{OUT} = V_{REF}$, $I_{OUT} = 100$ mA	4,5,6	02	66		dB
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1	02		100	μА
		V _{DIFF} = 3.3 V	2,3	1		100	
		V _{DIFF} = 40 V	1,2,3	1		100	
		V _{DIFF} = 60 V	1,2,3			100	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 9

Test	Symbol	Conditio $-55^{\circ}C \leq T_A \leq T$	+125°C	Group A subgroups	Device type	Lir	mits	Unit
		unless otherwise	e specified	3	51	Min	Max	
Case X, 2, 5, and 6 - Contin	nued.							
Adjustment pin current	ΔI_{ADJ}	V _{DIFF} = 3 V,		1	02		±5	μА
change		10 mA $\leq I_{L} \leq 500$	mA					
		V _{DIFF} = 3.3 V,		2,3			±5	
		10 mA ≤ I _L ≤ 500	mA					
		$V_{DIFF} = 40 \text{ V},$		1			±5	
		10 mA ≤ I _L ≤ 150	mA					
		$V_{DIFF} = 40 \text{ V},$		2,3			±5	
		10 mA ≤ I _L ≤ 100						
		$3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$		1			±5	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40$		2,3			±5	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 60$	0 V	1,2,3			±5	
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 \text{ V},$	D.	1	02		5	mA
		V _{OUT} = 1.4 V (for	ced)	0.0			_	<u> </u>
		$V_{DIFF} = 3.3 \text{ V},$ $V_{OUT} = 1.4 \text{ V (for other constraints)}$	aad)	2,3			5	
		$V_{\text{DIFF}} = 1.4 \text{ V (101)}$ $V_{\text{DIFF}} = 40 \text{ V},$	ceu)	1,2,3			5	1
		$V_{OUT} = 4.4 \text{ V}$ (for	ced)	1,2,3			3	
		$V_{\text{DIFF}} = 60 \text{ V},$		1,2,3			7	1
		$V_{OUT} = 1.4 \text{ V (for } 0.00)$	ced)	.,_,				
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	•	1,2,3	02	0.5	1.65	Α
		V _{DIFF} = 40 V		1		0.15	0.65	
		V _{DIFF} = 60 V		1		0.02	0.28	1
Cases M, N, T, U, Y, Z <u>4/</u>	<u> </u> <u>5</u> /							
Reference voltage	V _{REF}	V _{DIFF} = 3.0 V		1	02	1.20	1.30	V
Troidiand Vallage	• IXLI						1.00	
			1,D,P,L,R	1		1.20	1.30	
		$V_{DIFF} = 3.3 V$		2,3		1.20	1.30	
		V _{DIFF} = 40 V		1,2,3		1.20	1.30	
		N	1,D,P,L,R	1		1.20	1.30	
		V _{DIFF} = 60 V		1,2,3		1.20	1.30	
		N	1,D,P,L,R	1		1.20	1.30	
ee footnotes at end of table.								
STA MICROCIRO	NDARD	VING		ZE A			7	7034
	AND MARITI				EVISION LEVI	 EL	SHEET	-

Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +1 \\ I_{L} = 8 \text{ mA} \end{array} $	25°C	Group A		Lir	Limits	
		unless otherwise s	specified	<u> </u>	,,	Min	Max	
Cases M, N, T, U, Y, Z - Co	ontinued. <u>4</u> / <u>5</u>	<u>5</u> /						
Line regulation 3/	R _{LINE}	$V_{OUT} = V_{REF}$,		1	02		±9	mV
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						
			D,P,L,R	1			±9	
		V _{OUT} = V _{REF} ,		2,3			±23	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	V	1				-
		$V_{OUT} = V_{REF},$,	2,3	_		±5	_
		$40 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 60 \text{ V}$),P,L,R	2,3			±10	_
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 3 V$,	J, Γ , L, N	1	02		±5 ±15	mV
Load regulation 1/	INLOAD	10 mA \leq I _L \leq 1.5 A		'	02		±15	1110
),P,L,R	1			±15	1
		V _{DIFF} = 3.3 V,	,	2,3			±15	-
		10 mA ≤ I _L ≤ 1.5 A						
		$V_{DIFF} = 40V$,		1			±15	
		10 mA ≤ I _L ≤ 300 m	nΑ					
		M,C),P,L,R	1			±15	
		$V_{DIFF} = 40 \text{ V},$		2,3			±15	
		10 mA ≤ I _L ≤ 195 m	nΑ					
		V _{DIFF} = 60 V,		1,2,3			±15	
		10 mA ≤ I _L ≤ 30 mA						_
The war of we are define	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		D,P,L,R	1	00		±15	
Thermal regulation	V _{RTH}	$V_{IN} = 14.6 \text{ V}, I_L = 1.0 \text{ P}_D = 20 \text{ watts}, t = 2.0 \text{ T}_A = +25^{\circ}\text{C}$		1	02		±16	mV
),P,L,R	1			±16	1
Ripple rejection 2/	R _N	f = 120 Hz, C _{ADJ} =	10 μF,	4,5,6	02	66		dB
		V _{OUT} = V _{REF} , I _{OUT} =	100 mA					
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V		1	02		100	μА
		M.C	D,P,L,R	1			100	1
		V _{DIFF} = 3.3 V	, , ,	2,3			100	
		10.14					100	
		V _{DIFF} = 40 V		1,2,3			100	
		M,C),P,L,R	1			100	1
		V _{DIFF} = 60 V		1,2,3			100	
		ГМГ	D,P,L,R	1			100	-
ee footnotes at end of table		,-	,,,,,,,	-				1
	ANDARD		Siz					77034
MICROCIR								
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990				R	EVISION LEVE Y	L	SHEET	11

	TABLE	I. Electrical performance char	racteristics - Co	ntinued.			
Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ $I_{L} = 8 \text{ mA}$	Group A subgroups	Device type	Lim	nits	Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z - C	ontinued. <u>4</u> / <u>5</u>						
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	02		±5	μА
change		$10~\text{mA} \leq I_L \leq 1.5~\text{A}$					
		M,D,P,L,R	1			±5	
		V _{DIFF} = 3.3 V,	2,3			±5	
		$10~mA \leq I_L \leq 1.5~A$					
		$V_{DIFF} = 40 \text{ V},$	1			±5	
		10 mA ≤ I _L ≤ 300 mA					
		M,D,P,L,R	1			±5	
		$V_{DIFF} = 40 \text{ V},$	2,3			±5	
		$10 \text{ mA} \le I_L \le 195 \text{ mA}$					
		$3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1			±5	
		M,D,P,L,R	1			±5	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,3			±5	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 60 \text{ V}$	1,2,3			±5	
		M,D,P,L,R	1			±5	
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V,$	1	02		5	mA
		V _{OUT} = 1.4 V (forced)					
		M,D,P,L,R	1			5	
		$V_{DIFF} = 3.3 \text{ V},$	2,3			5	
		$V_{OUT} = 1.4 \text{ V (forced)}$	4.0.0				4
		$V_{DIFF} = 40 \text{ V},$ $V_{OUT} = 1.4 \text{ V (forced)}$	1,2,3			5	
		M,D,P,L,R	1	-		5	4
		$V_{DIFF} = 60 \text{ V},$	1,2,3	-		7	4
		$V_{OUT} = 1.4 \text{ V (forced)}$	1,2,0			,	
		M,D,P,L,R	1			7	-
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	02	1.5	3.5	Α
		M,D,P,L,R	1	-	1.5	3.5	-
		$V_{DIFF} = 40 \text{ V}$	1	-	0.3	1.5	-
							_
		M,D,P,L,R	1		0.3	1.5	_
		$V_{DIFF} = 60 \text{ V}$	1		0.05	0.50	
		M,D,P,L,R	1	1	0.05	0.50	1

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 12

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ I_{L} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6							
Reference voltage	V _{REF}	V _{DIFF} = 3.0 V	1	03	-1.275	-1.225	V
			2,3		-1.30	-1.20	
		V _{DIFF} = 40 V	1		-1.275	-1.225	
			2,3		-1.30	-1.20	
Line regulation	R _{LINE}	$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1	03		±9	mV
			2,3			±23	
Load regulation 1/	R _{LOAD}	V _{DIFF} = 5 V,	1,2,3	03		±25	mV
		$8 \text{ mA} \le I_L \le 200 \text{ mA}$					
		V _{DIFF} = 15 V,	1,2,3			±25	
		$8 \text{ mA} \le I_L \le 200 \text{ mA}$					
		$V_{DIFF} = 40V$,	1			±25	
		$8 \text{ mA} \le I_L \le 150 \text{ mA}$					
		V _{DIFF} = 40 V,	2,3			±25	
		$8 \text{ mA} \leq I_L \leq 50 \text{ mA}$					
Thermal regulation	V_{RTH}	V _{IN} = -16.25 V,	1	03		±2	mV
		$I_L = 330 \text{ mA}, T_A = +25^{\circ}\text{C}$					
		$P_D = 5$ watts, $t = 10$ ms,					
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	03	66		dB
		$V_{OUT} = V_{REF}$					
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1,2,3	03		100	μА
		V _{DIFF} = 40 V	1,2,3	-		100	
Adjustment pin current change	ΔI _{ADJ} (line)	$3.0~V \leq V_{DIFF} \leq 40~V$	1,2,3	03		±5	μА
	ΔI_{ADJ}	V _{DIFF} = 5.0 V,	1,2,3			±5	
	(load)	$8 \text{ mA} \leq I_L \leq 500 \text{ mA}$, ,-				
Minimum load current	I _{LMIN}	V _{DIFF} = 3.0 V,	1,2,3	03		3	mA
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		V _{DIFF} = 10 V,	1,2,3			3	
		V _{OUT} = -1.4 V (forced)					
		V _{DIFF} = 40 V,	1,2,3	1		5	
		V _{OUT} = -1.4 V (forced)					
Current limit 2/	I _{CL}	$V_{DIFF} = 5 \text{ V}, T_A = +25^{\circ}\text{C}$	1	03	0.5	1.8	Α
		V _{DIFF} = 40 V, T _A = +25°C	1	1	0.15	0.65]

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 13

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +125^{\circ}C$ $I_L = 8 \text{ mA}$	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	03	-1.275	-1.225	V
			2.2	-	4.00	4.00	
			2,3		-1.30	-1.20	
		V _{DIFF} = 40 V	1	-	-1.275	-1.225	
			2,3		-1.30	-1.20	
Line regulation	R _{LINE}	$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1	03		±9	mV
			2,3	-		±23	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 5 V$,	1,2,3	03		±25	mV
		$8 \text{ mA} \leq I_L \leq 1.5 \text{ A}$					
		V _{DIFF} = 12 V,	1			±25	
		$8 \text{ mA} \leq I_L \leq 1.5 \text{ A}$					
		$V_{DIFF} = 40V$,	1			±25	
		$8~mA \leq I_L \leq 200~mA$					
		$V_{DIFF} = 40 \text{ V},$	2,3	1		±25	
		$8~mA \leq I_L \leq 100~mA$					
Thermal regulation	V_{RTH}	$V_{IN} = -14.6 \text{ V},$	1	03		±5	mV
		$I_{L} = 1.5 A,$					
		$P_D = 20 \text{ watts, } t = 10 \text{ ms,}$ $T_A = +25^{\circ}\text{C}$					
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	03	66		dB
		$V_{OUT} = V_{REF}$					
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1,2,3	03		100	μΑ
		V _{DIFF} = 40 V	1,2,3	1		100	
Adjustment pin current change	ΔI _{ADJ} (line)	$3.0 \text{ V} \le \text{V}_{\text{DIFF}} \le 40 \text{ V}$	1,2,3	03		±5	μА
	ΔI_{ADJ}	$V_{DIFF} = 5.0 V$,	1,2,3	1		±5	
	(load)	$8~mA \leq I_L \leq 1.5~A$					

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 14

		0 1111					
Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ I_{L} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lim	nits	Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z - C	ontinued.						
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$	1,2,3	03		3	mA
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		V _{DIFF} = 10 V,	1,2,3			3	
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		$V_{DIFF} = 40 \text{ V},$	1,2,3	1		5	
		$V_{OUT} = -1.4 \text{ V (forced)}$					
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	03	1.5	3.5	Α
		V _{DIFF} = 40 V	1		0.24	1.2	
Cases X, 2, 5, and 6							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	04	-1.275	-1.225	V
			2,3		-1.300	-1.200	=
		V _{DIFF} = 40 V	1	-	-1.275	-1.225	
			2,3	-	-1.300	-1.200	1
		V _{DIFF} = 50 V	1	-	-1.275	-1.225	
			2,3		-1.300	-1.200	1
Line regulation	R _{LINE}	$3.0 \text{ V} \le \text{V}_{\text{DIFF}} \le 50 \text{ V}$	1	04		±10	mV
			2,3			±25	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 50 \text{ V},$	1	04		±25	mV
		$8 \text{ mA} \leq I_L \leq 100 \text{ mA}$					
		V _{DIFF} = 5.0 V,	1	1		±31	
		$8~mA \leq I_L \leq 500~mA$	2,3	1		±50	
Thermal regulation	V _{RTH}	$V_{IN} = -16.25 \text{ V},$ $I_L = 330 \text{ mA},$ $P_D = 5 \text{ watts}, t = 10 \text{ ms}, T_A$ $= +25^{\circ}\text{C}$	1	04		±2	mV
Ripple rejection <u>2</u> /	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$ $V_{OUT} = V_{REF}$	4,5,6	04	66		dB

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 15

		Conditions					
Test	Symbol	-55 °C \leq T _A \leq +125°C I _L = 8 mA	Group A subgroups	Device type	Lin	Limits	
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6 - Con	tinued.						
Adjustment pin current	I _{ADJ-1}	V _{DIFF} = 3.0 V	1,2,3	04		100	μА
	I _{ADJ-2}	$V_{DIFF} = 40 \text{ V}$	1,2,3			100	
	I _{ADJ-3}	$V_{DIFF} = 50 \text{ V}$	1,2,3			100	
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 5.0 V$,	1,2,3	04		±5	μΑ
change		$8~\text{mA} \leq I_{\text{OUT}} \leq 200~\text{mA}$					
		$I_L = 8 \text{ mA},$	1,2,3			±6	
		$3.0~V \leq V_{DIFF} \leq 50~V$					
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$,	1,2,3	04		3	mΑ
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		$V_{DIFF} = 10 \text{ V},$	1,2,3			3	
		V _{OUT} = -1.4 V (forced)					
		$V_{DIFF} = 40 \text{ V},$	1,2,3			5	
		V _{OUT} = -1.4 V (forced)	4.0.0			_	
		$V_{DIFF} = 50 \text{ V},$ $V_{OUT} = -1.4 \text{ V (forced)}$	1,2,3			5	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	04	0.5	1.8	A
ourient mint <u>zi</u>	ICL	ADIEL - 2 A	1,2,0	04	0.5	1.0	А
		V _{DIFF} = 50 V	1		0.1	0.65	
Cases M, N, T, U, Y, Z		<u> </u>				<u> </u>	
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	04	-1.275	-1.225	V
			2,3	-	-1.300	-1.200	
		V _{DIFF} = 50 V	1		-1.275	-1.225	
			2,3		-1.300	-1.200	
Line regulation	R _{LINE}	$3.0 \text{ V} \leq V_{DIFF} \leq 50 \text{ V}$	1	04		±10	mV
			2,3			±25	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 50 \text{ V},$	1	04		±25	mV
		$8 \text{ mA} \leq I_L \leq 110 \text{ mA}$					
		V _{DIFF} = 5.0 V,	1			±25	
		8 mA ≤ I _L ≤ 1.5 A	2,3			±45	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 16

Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +125^{\circ}C$	Group A	Device	Lim	nits	Unit
		$I_L = 8 \text{ mA}$	subgroups	type	<u> </u>	т—	
Case M, N, T, U, Y, Z - Cor	ntinued	unless otherwise specified			Min	Max	
Case IVI, IN, I, U, I, Z COI	Illiueu.						
Thermal regulation	V_{RTH}	V _{IN} = -14.6 V,	1	04		±5	mV
		$I_L = 1.5 A,$	1		1		1
		$P_D = 20 \text{ watts, } t = 10 \text{ ms,}$	1		1		1
		T _A = +25°C	1		1		
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	04	66		dB
		$V_{OUT} = V_{REF}$	1		1		
Adjustment pin current	I _{ADJ-1}	V _{DIFF} = 3.0 V	1,2,3	04		100	μΑ
	I _{ADJ-2}	V _{DIFF} = 40 V	1,2,3	-		100	
	I _{ADJ-3}	V _{DIFF} = 50 V	1,2,3	-		100	
Adjustment pin current	ΔI_{ADJ}	V _{DIFF} = 5.0 V,	1,2,3	04	 	±5	μА
change	AIADJ	$8 \text{ mA} \le I_{\text{OUT}} \le 1.5 \text{ A}$	1,2,0	"	1		μΑ
-		$I_L = 8 \text{ mA},$	1,2,3	-	 	±6	1
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 50 \text{ V}$	1, <u>2</u> ,0		1	±υ	
Minimum load current	1	$V_{DIFF} = 3.0 \text{ V},$	1,2,3	04	 	3	mA
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 \text{ V},$ $V_{OUT} = -1.4 \text{ V (forced)}$	۱,∠,٥	04		3	IIIA
		V _{DIFF} = 10 V,	1,2,3	- '	 	3	1
		$V_{\text{DIFF}} = 10 \text{ V},$ $V_{\text{OUT}} = -1.4 \text{ V (forced)}$	۱٫۷٫۵			3	
		$V_{DIFF} = 40 \text{ V},$	1,2,3	-	 	5	1
		$V_{OUT} = 40 \text{ V},$ $V_{OUT} = -1.4 \text{ V (forced)}$	1,∠,∪		1		1
		$V_{DIFF} = 50 \text{ V},$	1,2,3	-	 	5	1
		$V_{OUT} = -1.4 \text{ V (forced)}$	1,2,0		1		
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	04	1.5	3.5	Α
		V _{DIFF} = 50 V	1	<u> </u>	0.2	1.0	1
2		VDIFT 33.			<u> </u>		<u> </u>
Cases X, 2, 5, and 6							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	05	1.238	1.262	V
		V _{DIFF} = 3.3 V	2,3	†	1.225	1.270	1
		V _{DIFF} = 40 V	1,2,3	1 1	1.225	1.270	1

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 17

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.				
Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +125^{\circ}C$ $I_L = 8 \text{ mA}$	Group A subgroups	Device type	Limits		Unit	
		unless otherwise specified	-	-	Min	Max		
Cases X, 2, 5, and 6 - Con	tinued.							
Line regulation	R _{LINE}	$V_{OUT} = V_{REF}$	1	05		±4.5	mV	
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						
		V _{OUT} = V _{REF} ,	2,3	-		±9		
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						
Load regulation 1/	R _{LOAD}	V _{DIFF} = 3 V,	1	05		±15	mV	
		$10~\text{mA} \leq I_L \leq 500~\text{mA}$						
		$V_{DIFF} = 3.3 V$,	2,3	-	±15	±15		
		$10~mA \leq I_L \leq 500~mA$						
		$V_{DIFF} = 40 \text{ V},$	1		±15	±15	1	
		$10~\text{mA} \leq I_L \leq 150~\text{mA}$						
		$V_{DIFF} = 40 \text{ V},$	2,3			±15	1	
		$10~\text{mA} \leq I_L \leq 100~\text{mA}$						
Thermal regulation	V_{RTH}	$V_{IN} = +14.6 \text{ V},$	1	05		±2	mV	
		$I_L = 300 \text{ mA},$						
		$P_D = 4$ watts, $t = 20$ ms,						
		$T_A = +25^{\circ}C$						
Ripple rejection <u>2</u> /	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	05	66		dB	
		$V_{OUT} = V_{REF}$						
Adjustment pin current	I _{ADJ}	$V_{DIFF} = 3.0 \text{ V}$	1	05		100	μА	
		V _{DIFF} = 3.3 V	2,3			100		
		$V_{DIFF} = 40 \text{ V}$	1,2,3			100		
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	05		±5	μА	
change		$10~\text{mA} \leq I_L \leq 500~\text{mA}$						
		$V_{DIFF} = 3.3 V$,	2,3			±5	1	
		$10~\text{mA} \leq I_L \leq 500~\text{mA}$						
		$V_{DIFF} = 40 \text{ V},$	1		·	±5		
		$10~\text{mA} \leq I_L \leq 150~\text{mA}$						
		$V_{DIFF} = 40 \text{ V},$	2,3			±5		
		$10~\text{mA} \leq I_L \leq 100~\text{mA}$]	
		$3.0~V \leq V_{DIFF} \leq 40~V$	1			±5		
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,3] [±5		

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 18

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol			Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6 - Cor	ntinued.						
Minimum load current	I _{LMIN}	V _{DIFF} = 3.0 V,	1	05		5	mA
		V _{OUT} = 1.4 V (forced)					-
		$V_{DIFF} = 3.3 \text{ V},$ $V_{OUT} = 1.4 \text{ V (forced)}$	2,3			5	
		V _{DIFF} = 40 V,	1,2,3	-		5	
		$V_{OUT} = 1.4 \text{ V (forced)}$, ,-				
Current limit 2/	I _{CL}	V _{DIFF} = 15 V	1,2,3	05	0.5	1.65	Α
		V _{DIFF} = 40 V	1	_	0.15	0.65	
Cases M, N, T, U, Y, Z							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	05	1.238	1.262	V
		V _{DIFF} = 3.3 V	2,3	_	1.225	1.270	
		V _{DIFF} = 40 V	1,2,3	-	1.225	1.270	
Line regulation	R _{LINE}	V _{OUT} = V _{REF} ,	1	05		±4.5	mV
		$3.0 \text{ V} \leq V_{\text{DIFF}} \leq 40 \text{ V}$					
		$V_{OUT} = V_{REF},$	2,3			±9	
		$3.3~V \leq V_{DIFF} \leq 40~V$					
Load regulation 1/	R _{LOAD}	V _{DIFF} = 3 V,	1	05		±15	mV
		$10~\text{mA} \leq I_L \leq 1.5~\text{A}$					
		$V_{DIFF} = 3.3 V$,	2,3			±15	
		$10 \text{ mA} \le I_L \le 1.5 \text{ A}$					
		$V_{DIFF} = 40 \text{ V},$	1			±15	
		$10~\text{mA} \leq I_L \leq 300~\text{mA}$					
		V _{DIFF} = 40 V,	2,3			±15	
T 1 2		10 mA ≤ I _L ≤ 195 mA				_	.,
Thermal regulation	V_{RTH}	$V_{IN} = +14.6 \text{ V},$	1	05		±5	mV
		I _L = 1.5 A,					
		$P_D = 20 \text{ watts, t} = 20 \text{ ms,}$					
		$T_A = +25^{\circ}C$					

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 19

	$I_L = 8 \text{ mA}$	itions $2 \le +125^{\circ}C$ Group A subgroups		Limits Min May		Unit
	unless otherwise specified		type	Min	Max	
ntinued.						
R _N	f = 120 Hz, C_{ADJ} = 10 μ F, V_{OUT} = V_{REF}	4,5,6	05	66		dB
I _{ADJ}	V _{DIFF} = 3.0 V	1	05		100	μА
	V _{DIFF} = 3.3 V	2,3			100	
	V _{DIFF} = 40 V	1,2,3			100	
ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	05		±5	μА
	$10 \text{ mA} \le I_L \le 1.5 \text{ A}$					
	V _{DIFF} = 3.3 V,	2,3			±5	
	$10~mA \leq I_L \leq 1.5~A$					
	$V_{DIFF} = 40 \text{ V},$	1			±5	
	$10~mA \leq I_L \leq 300~mA$					
	$V_{DIFF} = 40 \text{ V},$	2,3			±5	
	$10~\text{mA} \leq I_L \leq 195~\text{mA}$					
	$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1			±5	
	$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,3			±5	
I _{LMIN}	$V_{DIFF} = 3.0 V$,	1	05		5	mA
	V _{OUT} = 1.4 V (forced)					
	$V_{DIFF} = 3.3 V$,	2,3			5	
			_			
	· ·	1,2,3			5	
	· · ·					
I _{CL}	V _{DIFF} = 15 V	1,2,3	05	1.50	3.50	Α
	V _{DIFF} = 40 V	1		0.18	1.5	
V_{REF}	V _{DIFF} = 3.0 V	1	06	-1.262	-1.238	V
		2,3		-1.280	-1.220	
	V _{DIFF} = 40 V	1,2,3	1	-1.280	-1.220	
Э.						
NDARD					7	7034
	IADJ Aladj ILMIN ICL VREF	Vout = Vref Voiff = 3.0 V Voiff = 40 V Voiff = 3 V 10 mA ≤ IL ≤ 1.5 A Voiff = 40 V 10 mA ≤ IL ≤ 1.5 A Voiff = 40 V 10 mA ≤ IL ≤ 300 mA Voiff = 40 V 10 mA ≤ IL ≤ 195 mA 3.0 V ≤ Voiff ≤ 40 V 3.3 V ≤ Voiff ≤ 40 V Voiff = 3.0 V Vout = 1.4 V (forced) Voiff = 3.3 V Voiff = 40 V Voi	Vout = Vref Voiff = 3.0 V	Vout = Vref Voiff = 3.0 V	Vout = Vref 1	Nour = Vref Voiff = 3.0 V

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +125^{\circ}C$ $I_L = 8 \text{ mA}$	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6 - Con	tinued.						
Line regulation	R _{LINE}	$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	1	06		±4.5	mV
			2,3	-		±13.8	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 5 \text{ V},$ 8 mA \le I_L \le 200 mA	1,2,3	06		±25	mV
		V _{DIFF} = 15 V,	1,2,3	_		±25	
		$8~mA \leq I_L \leq 200~mA$					
		$V_{DIFF} = 40 \text{ V},$ $8 \text{ mA} \le I_L \le 150 \text{ mA}$	1			±25	
		$V_{DIFF} = 40 \text{ V},$ $8 \text{ mA} \le I_L \le 50 \text{ mA}$	2,3			±50	
Thermal regulation	V _{RTH}	$V_{IN} = -16.25 \text{ V},$ $I_L = 330 \text{ mA}, T_A = +25^{\circ}\text{C}$ $P_D = 5 \text{ watts}, t = 10 \text{ ms}$	1	06		±2	mV
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$ $V_{OUT} = V_{REF}$	4,5,6	06	66		dB
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1,2,3,	06		100	μА
		V _{DIFF} = 40 V	1,2,3	1		100	
Adjustment pin current change	ΔI_{ADJ} (line)	$3.0~V \leq V_{DIFF} \leq 40~V$	1,2,3	06		±5	μА
	ΔI _{ADJ} (load)	$\begin{split} V_{DIFF} &= 5.0 \text{ V}, \\ 8 \text{ mA} &\leq I_L \leq 500 \text{ mA} \end{split}$	1,2,3			±5	
Minimum load current	I _{LMIN}	V _{DIFF} = 3.0 V, V _{OUT} = -1.4 V (forced)	1,2,3	06		3	mA
		V _{DIFF} = 10 V, V _{OUT} = -1.4 V (forced)	1,2,3			3	
		V _{DIFF} = 40 V, V _{OUT} = -1.4 V (forced)	1,2,3			5	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V, T _A = +25°C	1	06	0.5	1.8	А
		V _{DIFF} = 40 V, T _A = +25°C	1		0.15	0.65	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 21

Test	Symbol		Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	06	-1.262	-1.238	V
3	INE!						
			2,3		-1.280	-1.220	
		V _{DIFF} = 40 V	1,2,3	=	-1.280	-1.220	-
_ine regulation	R _{LINE}	$3.0 \text{ V} \le \text{V}_{\text{DIFF}} \le 40 \text{ V}$	1	06		±4.5	mV
			2,3	1		±13.8	
_oad regulation 1/	R _{LOAD}	$V_{DIFF} = 5 V$,	1,2,3	06		±25	mV
		$8 \text{ mA} \leq I_L \leq 1.5 \text{ A}$					
		V _{DIFF} = 12 V,	1	1		±25	
		$8~mA \leq I_L \leq 1.5~A$					
		$V_{DIFF} = 40 \text{ V},$	1	1		±25	
		$8~mA \leq I_L \leq 200~mA$					
		$V_{DIFF} = 40 \text{ V},$	2,3			±50	
		$8~mA \leq I_L \leq 100~mA$					
Thermal regulation	V _{RTH}	$V_{IH} = -14.6 \text{ V},$ $I_L = 1.5 \text{ A},$ $P_D = 20 \text{ watts, } t = 10 \text{ ms,}$ $T_A = +25^{\circ}\text{C}$	1	06		±5	mV
Ripple rejection <u>2</u> /	R _N	f = 120 Hz, C _{ADJ} = 10 μF,	4,5,6	06	66		dB
, _		$V_{OUT} = V_{REF}$, ,				
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1,2,3,	06		100	μА
		V _{DIFF} = 40 V	1,2,3	1		100	
Adjustment pin current change	ΔI _{ADJ} (line)	$3.0~V \leq V_{DIFF} \leq 40~V$	1,2,3	06		±5	μА
	ΔI_{ADJ}	$V_{DIFF} = 5.0 \text{ V},$	1,2,3			±5	1
	(load)	$8~mA \leq I_L \leq 1.5~A$					
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$,	1,2,3	06		3	mA
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		V _{DIFF} = 10 V,	1,2,3			3	
		V _{OUT} = -1.4 V (forced)	4.0.0			_	4
		$V_{DIFF} = 40 \text{ V},$ $V_{OUT} = -1.4 \text{ V (forced)}$	1,2,3			5	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	06	1.5	3.5	Α
04110111111111111111111111111111111111	ICL	V DIFF = 0 V	1,2,0		1.0	0.0] ,,
		V _{DIFF} = 40 V, T _A = +25°C	1		0.24	1.2	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 22

	TABLE	I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ I_{L} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	07	1.238	1.262	V
		V _{DIFF} = 3.3 V	2,3	-	1.225	1.27	
		V _{DIFF} = 40 V	1,2,3	-	1.225	1.27	
		V _{DIFF} = 60 V	1,2,3	-	1.225	1.27	
Line regulation 3/	R _{LINE}	$V_{OUT} = V_{REF}$ 3.0 V $\leq V_{DIFF} \leq 40 \text{ V}$	1	07		±4.5	mV
		$V_{OUT} = V_{REF}$	2,3	-		±9	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$	2,0				
		V _{OUT} = V _{REF}	1			±2.5	
		$40 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 60 \text{ V}$	2,3			±4.0	
Load regulation 1/	R _{LOAD}	V _{DIFF} = 3 V,	1	07		±15	mV
		$10 \text{ mA} \le I_L \le 500 \text{ mA}$					
		V _{DIFF} = 3.3 V,	2,3	1		±15	
		$10~\text{mA} \leq I_L \leq 500~\text{mA}$					
		$V_{DIFF} = 40 \text{ V},$	1			±15	
		$10~\text{mA} \leq I_L \leq 150~\text{mA}$					
		$V_{DIFF} = 40 \text{ V},$	2,3			±15	
		10 mA ≤ I _L ≤ 100 mA					
		$V_{DIFF} = 60 \text{ V},$ $10 \text{ mA} \le I_L \le 20 \text{ mA}$	1,2,3			±15	
Thermal regulation	V_{RTH}	V _{IN} = 14.6 V,	1	07		±2	mV
		$I_L = 300 \text{ mA},$					
		$P_D = 4$ watts, $t = 20$ ms,					
		$T_A = +25^{\circ}C$					
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	07	66		dB
		$V_{OUT} = V_{REF},$					
		I _{OUT} = 100 mA				4.5.5	
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1	07		100	μΑ
		V _{DIFF} = 3.3 V	2,3			100	
		V _{DIFF} = 40 V	1,2,3]		100	
		$V_{DIFF} = 60 \text{ V}$	1,2,3			100	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 23

Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ I_{L} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases X, 2, 5, and 6 - Con	tinued.						
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	07		±5	μА
change		10 mA ≤ I _L ≤ 500 mA					,
		V _{DIFF} = 3.3 V,	2,3			±5	
		10 mA ≤ I _L ≤ 500 mA					
		V _{DIFF} = 40 V,	1	-		±5	
		$10~\text{mA} \leq I_L \leq 150~\text{mA}$					
		$V_{DIFF} = 40 \text{ V},$	2,3	1		±5	
		$10~mA \leq I_L \leq 100~mA$					
		$3.0~V \leq V_{DIFF} \leq 40~V$	1			±5	
		$3.3~V \leq V_{DIFF} \leq 40~V$	2,3			±5	
		$3.3~V \leq V_{DIFF} \leq 60~V$	1,2,3			±5	
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$,	1	07		5	mA
		V _{OUT} = 1.4 V (forced)					
		$V_{DIFF} = 3.3 \text{ V},$	2,3			5	
		V _{OUT} = 1.4 V (forced)	4.0.0	-			
		$V_{DIFF} = 40 \text{ V},$ $V_{OUT} = 1.4 \text{ V (forced)}$	1,2,3			5	
		$V_{\text{DIFF}} = 60 \text{ V},$	1,2,3			7	
		$V_{OUT} = 1.4 \text{ V (forced)}$	1,2,0			'	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	07	0.50	1.65	A
	02	V _{DIFF} = 40 V	1	-	0.15	0.65	
		V _{DIFF} = 60 V	1	-	0.02	0.28	
Cases M, N, T, U, Y, Z, 4	<u>4</u> / <u>5</u> /		l			l	
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	07	1.238	1.262	V
		M,D,P,L,R	1	_	1.238	1.262	
		V _{DIFF} = 3.3 V	2,3		1.225	1.27	-
		V _{DIFF} = 40 V	1,2,3		1.225	1.27	-
		M,D,P,L,R	1	-	1.225	1.27	1
		V _{DIFF} = 60 V	1,2,3	-	1.225	1.27	1
		M,D,P,L,R	1		1.225	1.27	_
See footnotes at end of tabl	e.						-

SIZE

Α

REVISION LEVEL Y

77034

24

SHEET

DSCC FORM 2234 APR 97 **STANDARD**

MICROCIRCUIT DRAWING
DLA LAND AND MARITIME

COLUMBUS, OHIO 43218-3990

Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +12$ $I_L = 8 \text{ mA}$	0.0	oup A groups	Device type	Lin	nits	Unit
		unless otherwise sp	· · · · · · ·	, ,	,,	Min	Max	
Cases M, N, T, U, Y, Z, 4 -	- Continued 4	<u>/</u> <u>5</u> /						
Line regulation 3/	R _{LINE}	$V_{OUT} = V_{REF}$		1	07		±4.5	mV
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						
				1			±4.5	
		V _{OUT} = V _{REF}		2,3			±9	
		$3.3 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$						-
		$V_{OUT} = V_{REF}$		1	_		±5	
		40 V ≤ V _{DIFF} ≤ 60 V		2,3			±10	-
			,P,L,R	1	07		±5	.,
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 3 \text{ V},$		1	07		±15	mV
		10 mA ≤ I _L ≤ 1.5 A	,P,L,R	1	-		145	-
		V _{DIFF} = 3.3 V,		2,3	-		±15 ±15	-
		10 mA \leq I _L \leq 1.5 A		<u>-,</u> 5			115	
		$V_{DIFF} = 40 \text{ V},$		1	_		±15	
		10 mA ≤ I _L ≤ 300 m/	Α					
				1	_		±15	-
		V _{DIFF} = 40 V,	2	2,3	_		±15	
		10 mA ≤ I _L ≤ 195 m/	Α					
		$V_{DIFF} = 60 \text{ V},$	1,	2,3			±15	1
		$10 \text{ mA} \leq I_L \leq 30 \text{ mA}$						
			,P,L,R	1			±15	
Thermal regulation	V_{RTH}	V _{IN} = 14.6 V,		1	07		±5	mV
		$I_L = 1.5 \text{ A},$ $P_D = 20 \text{ watts, t} = 20$) ms					
		$T_A = +25^{\circ}C$	J 1115,					
			,P,L,R	1			±5	-
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 1$		5,6	07	66		dB
, _		$V_{OUT} = V_{REF}$		•				
		I _{OUT} = 100 mA						
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V		1	07		100	μΑ
			,P,L,R	1			100	
		$V_{DIFF} = 3.3 \text{ V}$		2,3			100]
		V _{DIFF} = 40 V		2,3			100	
			,P,L,R	1	<u> </u>		100	
		V _{DIFF} = 60 V		2,3	<u> </u>		100	_
		M,D,	,P,L,R	1			100	
see footnotes at end of tabl	e.							
STA MICROCIR	ANDARD	VING	SIZE A				7	77034
DLA LAND	AND MARITI OHIO 43218-	ME		REV	ISION LEVE	 L	SHEET	

	TABLE	I. Electrical performance cha	aracteristics - Co	ntinued.			
Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ I_{L} = 8 \text{ mA} \end{array} $	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
Cases M, N, T, U, Y, Z, 4 -	Continued 4	<u>/</u> <u>5</u> /					
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 3 V$,	1	07		±5	μА
change		$10~\text{mA} \leq I_L \leq 1.5~\text{A}$					
		M,D,P,L,R	1			±5	
		V _{DIFF} = 3.3 V,	2,3			±5	
		$10 \text{ mA} \le I_L \le 1.5 \text{ A}$					
		$V_{DIFF} = 40 \text{ V},$	1			±5	
		10 mA ≤ I _L ≤ 300 mA		-			-
		M,D,P,L,R	1			±5	
		V _{DIFF} = 40 V,	2,3			±5	
		10 mA ≤ I _L ≤ 195 mA	1				
		$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$ M,D,P,L,R	1			±5	
			2,3			±5	-
		$3.3 \text{ V} \le \text{V}_{\text{DIFF}} \le 40 \text{ V}$ $3.3 \text{ V} \le \text{V}_{\text{DIFF}} \le 60 \text{ V}$	1,2,3			±5	-
		3.3 V ≤ V _{DIFF} ≤ 60 V M,D,P,L,R	1,2,3			±5 ±5	-
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 \text{ V},$	1	07		<u>±</u> 5	mA
Williman load current	ILMIN	$V_{OUT} = 1.4 \text{ V (forced)}$	'	07			IIIA
		M,D,P,L,R	1			5	-
		V _{DIFF} = 3.3 V,	2,3			5	-
		V _{OUT} = 1.4 V (forced)					
		$V_{DIFF} = 40 \text{ V},$	1,2,3			5	
		V _{OUT} = 1.4 V (forced)					
		M,D,P,L,R	1			5	
		$V_{DIFF} = 60 \text{ V},$	1,2,3			7	
		V _{OUT} = 1.4 V (forced)					
Oversant limit 2/		M,D,P,L,R	1	07	4.50	7	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V M,D,P,L,R	1,2,3	07	1.50	3.5 3.5	А
		$V_{DIFF} = 40 \text{ V}$	1		0.3	1.5	-
		M,D,P,L,R	1		0.3	1.5	-
		$V_{DIFF} = 60 \text{ V}$	1		0.05	0.50	-
	1	M,D,P,L,R	1	-	0.05	0.50	

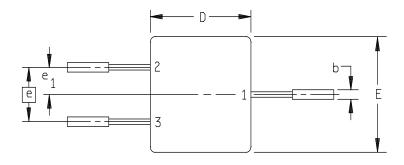
STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 26

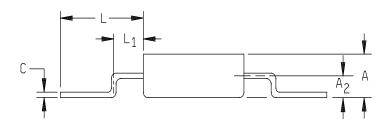
	TABLE	I. Electrical performance char	acteristics - Co	ontinued.			
Test	Symbol	Conditions $ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C $ $I_{L} = 8 \text{ mA} $	Group A subgroups	Device type	Lin		Unit
Cases X, 2, 5, and 6		unless otherwise specified			Min	Max	
Cases A, Z, S, and 0							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	08	-1.262	-1.235	V
			2,3		-1.28	-1.22	
		V _{DIFF} = 40 V	1		-1.28	-1.22	
			2,3		-1.28	-1.22	
		V _{DIFF} = 50 V	1		-1.28	-1.22	
			2,3		-1.28	-1.22	
Line regulation	R _{LINE}	$3.0 \text{ V} \leq V_{\text{DIFF}} \leq 50 \text{ V}$	1	08		±10	mV
			2,3			±25	
Load regulation 1/	R _{LOAD}	$V_{DIFF} = 50 \text{ V},$	1	08		±25	mV
		$8~mA \leq I_L \leq 100~mA$					
		$V_{DIFF} = 5.0 \text{ V},$	1			±31	1
		$8 \text{ mA} \le I_L \le 500 \text{ mA}$	2,3			±50	
Thermal regulation	V _{RTH}	V _{IN} = -16.25 V,	1	08		±2	mV
		$I_L = 330 \text{ mA}, T_A = +25^{\circ}\text{C},$					
		P _D = 5 watts, t = 10 ms					
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	08	66		dB
		$V_{OUT} = V_{REF}$					
Adjustment pin current	I _{ADJ-1}	V _{DIFF} = 3.0 V	1,2,3	08		100	μА
	I _{ADJ-2}	V _{DIFF} = 40 V	1,2,3			100	
	I _{ADJ-3}	V _{DIFF} = 50 V	1,2,3			100	
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 5 V$,	1,2,3	08		±5	μА
change		$8 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}$					
		I _L = 8 mA,	1,2,3			±6	
		$3.0 \text{ V} \leq V_{DIFF} \leq 50 \text{ V}$					
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 \text{ V},$	1,2,3	08		3	mA
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		V _{DIFF} = 10 V,	1,2,3			3	1
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		$V_{DIFF} = 40 \text{ V},$	1,2,3			5	1
		$V_{OUT} = -1.4 \text{ V (forced)}$					
		$V_{DIFF} = 50 \text{ V},$	1,2,3			5	
		$V_{OUT} = -1.4 \text{ V (forced)}$				<u> </u>	
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	08	0.5	1.8	Α
		V _{DIFF} = 50 V	1		0.1	0.65	

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 27

Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ $I_{L} = 8 \text{ mA}$	Group A subgroups		Limits		Unit	
		unless otherwise specified		71	Min	Max	1	
Cases M, N, T, U, Y, Z	•							
Reference voltage	V_{REF}	V _{DIFF} = 3.0 V	1	08	-1.262	-1.238	V	
· ·			2,3	_	-1.28	-1.22		
		V _{DIFF} = 50 V	1	-	-1.28	-1.22		
			2,3	_	-1.28	-1.22		
Line regulation	R _{LINE}	3.0 V ≤ V _{DIFF} ≤ 50 V	1	08		±6	mV	
			2,3	1		±20		
Load regulation 1/	R _{LOAD}	V _{DIFF} = 50 V,	1	08		±25	mV	
		$8 \text{ mA} \leq I_L \leq 110 \text{ mA}$						
		V _{DIFF} = 5.0 V,	1			±25		
		$8 \text{ mA} \leq I_L \leq 1.5 \text{ A}$	2,3			±50		
Thermal regulation	V_{RTH}	V _{IN} = -14.6 V,	1	08		±5	mV	
		I _L = 1.5 A,						
		$P_D = 20 \text{ watts, } t = 10 \text{ ms,}$						
		T _A = +25°C						
Ripple rejection 2/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu\text{F},$	4,5,6	08	66		dB	
		$V_{OUT} = V_{REF}$						
Adjustment pin current	I _{ADJ-1}	V _{DIFF} = 3.0 V	1,2,3	08		100	μА	
	I _{ADJ-2}	V _{DIFF} = 40 V	1,2,3			100		
	I _{ADJ-3}	V _{DIFF} = 50 V	1,2,3			100		
Adjustment pin current	ΔI_{ADJ}	$V_{DIFF} = 5 V$,	1,2,3	08		±5	μА	
change		$8 \text{ mA} \leq I_{OUT} \leq 1.5 \text{ A}$						
		$I_L = 8 \text{ mA},$	1,2,3			±6		
		$3.0~V \leq V_{DIFF} \leq 50~V$						
Minimum load current	I _{LMIN}	$V_{DIFF} = 3.0 V$,	1,2,3	08		3	mA	
		$V_{OUT} = -1.4 \text{ V (forced)}$						
		$V_{DIFF} = 10 V$,	1,2,3			3		
		V _{OUT} = -1.4 V (forced)						
		$V_{DIFF} = 40 \text{ V},$	1,2,3			5		
		V _{OUT} = -1.4 V (forced)	4.5.5	1				
		$V_{DIFF} = 50 \text{ V},$	1,2,3			5		
0 41 24		V _{OUT} = -1.4 V (forced)	4.00		4 -	0 =		
Current limit 2/	I _{CL}	V _{DIFF} = 5 V	1,2,3	08	1.5	3.5	Α	
		$V_{DIFF} = 50 \text{ V}$	1		0.2	1.0		

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 28


TABLE I. <u>Electrical performance characteristics</u> - Continued.


- 1/ Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. With exception of cases U, 2, and 4, all output measurements are referenced to the case. Measurements taken at the output lead must be adjusted for lead resistance.
- 2/ If not tested, shall be guaranteed to the specified limits in table herein.
- 3/ To determine the line regulation limits for 3.0 V \leq V_{DIFF} \leq 60 V (or 3.3 V \leq V_{DIFF} \leq 60 V) add the limits for 3.0 V \leq V_{DIFF} \leq 40 V (or 3.3 V \leq V_{DIFF} \leq 40 V) to the limits for 40 V \leq V_{DIFF} \leq 60 V.
- $\underline{4}'$ Device types 02 and 07 with case outline U supplied to this drawing have been characterized through all levels M, D, P, L, and R of irradiation. However, these devices are only tested at the 'R' level. Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, $T_A = +25$ °C.
- 5/ These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019 condition A.

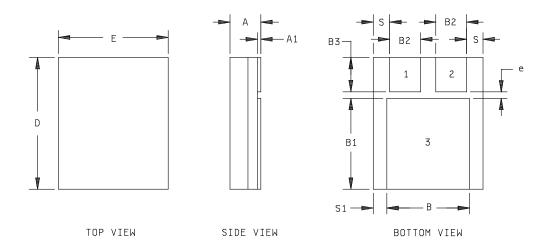
STANDARD					
MICROCIRCUIT DRAWING					
DLA LAND AND MARITIME					
COLUMBUS, OHIO 43218-3990					

SIZE A		77034
	REVISION LEVEL Y	SHEET 29

Case outline M

Device types	All
Terminal number	Terminal symbol
1	V_{OUT}
2	ADJUST
3	V _{IN}
CASE	ISOLATED

Symbol	Inc	hes	Millim	neters
	Min	Max	Min	Max
Α	.160		4.06	
A_2	.080		2.03	
b		.035		0.89
С	.020		0.51	
D		.425		10.8
Е		.425		10.8
е	.200	D BSC 5.08 BSC		BSC
e ₁	.100	BSC 2		BSC
L	.350		8.89	
L ₁		.135		3.43


NOTES:

- Dimensions shall be measured in inches. Metric equivalents are given for general information only. 1. 2. 3.
- Three leads.

FIGURE 1. Case outlines and terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 30

Case outline N

Device types	01, 02, 05, 07		
Case outline	N		
Terminal number	Terminal symbol		
1	ADJUST	ADJUST	
2	INPUT	OUTPUT	
3	OUTPUT	INPUT	

Symbol	Inc	hes	Millime	eters
	Min	Max	Min	Max
Α	.130	.150	3.30	3.81
A1	.010	.020	0.25	0.51
В	.370	.380	9.40	9.65
B1	.410	.420	10.41	10.67
B2	.135	.145	3.43	3.68
B3	.152	.162	3.86	4.11
D	.620	.630	15.75	16.00
E	.445	.455	11.30	11.55
е	.030		0.76	
S	.045	.055	1.14	1.40
S1	.035	.045	0.89	1.14

NOTE:

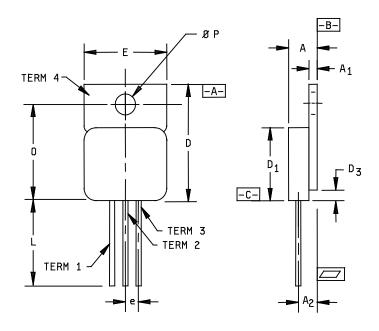

The U.S. government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 31

Case outlines T and U

Device types	01, 02, 05, 07	01, 02, 05, 07	03, 04, 06, 08	
Case outlines	T	U	T	U
Terminal number	Terminal symbol			
1	ADJUST	ADJUST	ADJUST	ADJUST
2	V_{OUT}	V_{OUT}	V_{IN}	V_{IN}
3	V_{IN}	V_{IN}	V_{OUT}	V_{OUT}
4	Vout	NC	V _{IN}	NC

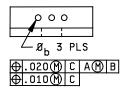


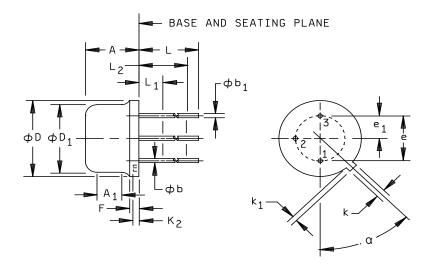
FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 32

Case outlines T and U

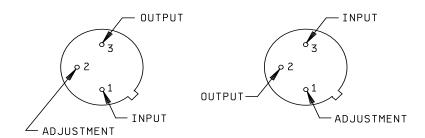
Symbol	Inches		Inches Millimeters		eters
	Min	Max	Min	Max	
Α	.190	.200	4.83	5.08	
A ₁	.035	.045	0.89	1.14	
A_2	.120	.120 BSC		BSC	
φb	.025	.035	0.64	0.89	
D	.645	.665	16.38	16.89	
D_1	.410	.430	10.41	10.92	
D_3	.000	.065	0.00	1.65	
е	.100	BSC	2.54 BSC		
E	.410	.422	10.41	10.71	
L	.500	.750	12.70	19.05	
0	.527	.537	13.39	13.64	
φР	.140	.150	3.56	3.81	

NOTES:


- 1. Dimensions shall be measured in inches.
- Metric equivalents are given for general information only.

 For case outlines T and U only, CAGE 34333, the ceramic seal that protrudes from the seating plane is not to be considered in overall package dimensions. The ceramic seal protrusion is considered uncontrolled within an area 30 mils from the seating plane.

FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.


STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 33

Case outline X

Device types 01, 02, 05, and 07

Device types 03, 04, 06, and 08

Bottom view

Bottom view

FIGURE 1. <u>Case outlines and terminal connections</u> - Continued.

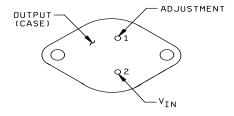
STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 34

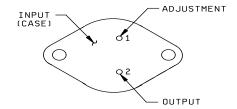
Case outline X

Symbol	Inc	Inches Millimeters		Notes	
	Min	Max	Min	Max	=
Α	.165	.195	4.19	4.95	
A ₁	.100		2.54		7
φb	.016	.019	0.41	0.48	3
φb₁	.016	.021	0.41	0.53	3
φD	.335	.370	8.51	9.40	
φD ₁	.305	.335	7.75	8.51	
е	.200	BSC	5.08 BSC		5
e ₁	.100	BSC	2.54 BSC		5
F		.050		1.27	
k	.028	.034	0.71	0.86	
k ₁	.029	.045	0.74	1.14	4
k_2	.009	.041	0.23	1.04	
L	.500		12.70		
L ₁		.050		1.27	
L_2	.250		6.35		
α	45°	T.P.	45°	T.P.	5

NOTES:

- 1. Dimensions shall be measured in inches.
- 2. Metric equivalents are given for general information only.
- φb applies between L₁ and beyond .500 inch (12.70 mm) from the seating plane (two leads). Diameter is uncontrolled in L₁ and beyond .500 inch (12.70 mm) from the seating plane.
- 4. Two leads.
- 5. Two holes.
- 6. Two holes located at true position within diameter .010 inch (0.25 mm).
- 7. Leads having a maximum diameter of .043 inch (1.09 mm) measured in gauging plane .054 inch (1.37 mm) \pm .001 (0.03 mm) .000 inch (0.00 mm) below the seating plane shall be located at true position within diameter .014 inch (0.36 mm).
- 8. The mounting surface of the header shall be flat to convex within .003 inch (0.08 mm) inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat to convex within .006 inch (0.15 mm) overall.


FIGURE 1. Case outlines and terminal connections - Continued.


STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 35

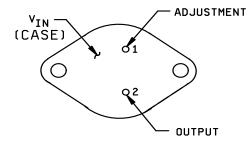
Case outline Y

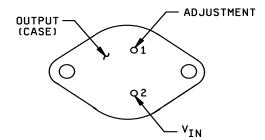
Device types 01, 02, 05, and 07

Device types 03, 04, 06, and 08

Bottom view

Bottom view


FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.


STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 36

Case outline Z

Device types 03, 04, 06, and 08

Device types 01, 02, 05, and 07

Bottom view

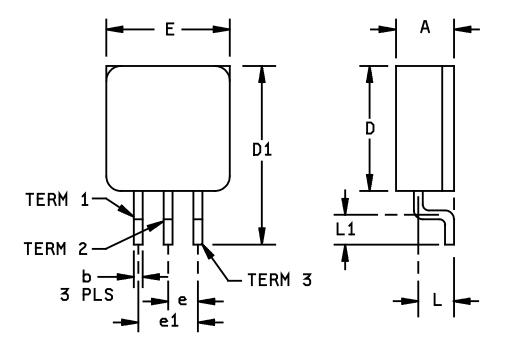

Bottom view

FIGURE 1. Case outlines and terminal connections - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 37

Case outline 4

Device type	07
Terminal number	Terminal symbol
1	ADJUST
2	V _{OUT}
3	VIN

Symbol	Inches		Millim	neters
	Min	Max	Min	Max
Α	.190	.210	4.83	5.33
b		.030		0.76
D	.410	.430	10.41	10.92
D1	.580	.610	14.73	15.49
е		.100		2.54
e1		.200		5.08
E	.410	.420	10.41	10.67
L1	.090	.110	2.29	2.79
L	.115	.125	2.92	3.18
N	3	3	3	3

NOTE:

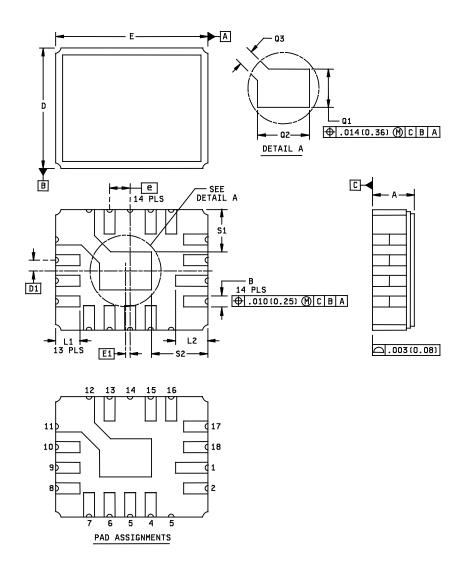

The U.S. government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 38

Case outline 5

Device types 01, 02, 05, 07

NOTES:

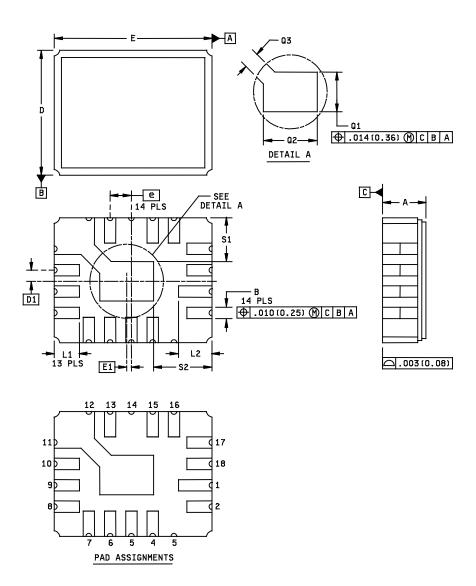

- 1. Dimensions are in inches. Metric equivalents are given for information only.
- 2. Pins 4, 5 Adjust Pins 6, 7, 8, 9, 10, 11, 12, 13 V_{IN} Pins 1, 2, 15, 16, 17, 18 V_{OUT} Pins 3, 14 no connect

FIGURE 1. Case outlines and terminal connections - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 39

Case outline 6

Device types 03, 04, 06, 08

NOTES:

- 1. Dimensions are in inches. Metric equivalents are given for information only.

FIGURE 1. Case outlines and terminal connections - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 40

Case outlines 5 and 6

Symbol	Inches		Millim	eters
	Min	Max	Min	Max
Α	.095	.115	2.42	2.92
В	.020	.030	0.51	0.76
D	.280	.295	7.12	7.49
D1	.025	BSC	0.635	BSC
Е	.345	.360	8.77	9.14
E1	.008 BSC		0.203 BSC	
е	.050	BSC	1.27 BSC	
L1	.040	.055	1.02	1.39
L2	.055	.065	1.40	1.65
Q1	.070	.080	1.78	2.03
Q2	.120	.130	3.05	3.30
Q3	.045	.055	1.15	1.39
S1	.105 REF		2.67	REF
S2	.120	REF	3.05	REF

FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 41

Device types	01, 05	02, 07	03, 06	04, 08
Case outline	2			
Terminal number		Terminal syn	nbol	
1	V _{OUT} SENSE (see note)	NC	V _{OUT}	V _{IN}
2	NC	NC	V _{OUT} SENSE (see note)	NC
3	NC	NC	NC	NC
4	NC	NC	NC	NC
5	V _{IN}	NC	NC	NC
6	NC	NC	NC	NC
7	NC	NC	NC	NC
8	NC	NC	NC	NC
9	NC	NC	NC	ADJUST
10	ADJUST	NC	NC	NC
11	NC	V_{IN}	V_{IN}	NC
12	NC	V_{OUT}	NC	V _{OUT}
13	NC	V_{OUT}	NC	V _{OUT}
14	NC	V _{OUT} SENSE (see note)	NC	NC
15	NC	NC	NC	NC
16	NC	NC	ADJUST	NC
17	NC	NC	NC	NC
18	NC	ADJUST	NC	NC
19	NC	NC	NC	NC
20	V _{OUT}	V_{IN}	NC	V_{IN}

NOTE: For normal operation, the V_{OUT} SENSE pin must be connected externally to the load.

FIGURE 1. <u>Case outlines and terminal connections</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 42

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.
 - 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.
- 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. Subgroups 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 43

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgi (in accord MIL-PRF-38	ance with
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			
Final electrical parameters (see 4.2)	1,2,3,4,5,6 <u>1</u> / <u>2</u> /	1,2,3,4,5,6 <u>1</u> / <u>2</u> /	1,2,3,4,5,6 <u>1</u> / <u>2</u> /
Group A test requirements (see 4.4)	1,2,3	1,2,3	1,2,3
Group C end-point electrical parameters (see 4.4)	1	1	1,2,3 <u>3</u> /
Group D end-point electrical parameters (see 4.4)	1	1	1,2,3
Group E end-point electrical parameters (see 4.4)	1	1	1

- 1/ PDA applies to subgroup 1.
- 2/ Subgroups 4, 5, and 6, if not tested, shall be guaranteed to the limits specified in table I.
- 3/ Delta limits as specified in table IIB shall be required where specified and the delta limits shall be computed with reference to the previous end-point electrical parameter

TABLE IIB. Group C delta limits at +25°C.

Test	Device type	Case outline	Lir	nit	Unit
			Min	Max	
V _{REF}	03,04	X, Y		±0.01	V
RLINE	03,04	X, Y		±4	mV
I _{ADJ}	03	X, Y		±10	μА
	04	X, Y		±10]

- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - b. $T_A = +125$ °C, minimum.
 - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 44

- 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).
 - a. End-point electrical parameters shall be as specified in table IIA herein.
 - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C, after exposure, to the subgroups specified in table IIA herein.
- 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and as specified herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.
- 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		77034
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL Y	SHEET 45

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 14-06-12

Approved sources of supply for SMD 77034 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN <u>2</u> /	PIN
7703401MA	<u>3</u> /	SDP117MMD	
	69210	OM1320SMM	
7703401NA	<u>3</u> /	SDP117NMD	
	69210	OM1320NMM	
7703401TA	U3158	IP117G-DESC	
	<u>3</u> /	SDP117TMD	
	69210	OM1320NTM	
	34333	SG117G/883B	
7703401UA	U3158	IP117IG-DESC	
	60264	MTLM117QP	
	<u>3</u> /	SDP117UMD	
	<u>3</u> /	FM117S7/883	
	34333	SG117IG/883B	
	69210	OM1320STM	1
7703401XA	U3158	IP117MH-DESC	M38510/11703BXX
	60264	MTLM117QH	
	<u>3</u> /	LM117H/883B	
	34333	SG117T/883B	
	<u>3</u> /	LM117H/883B	
	3/	SDP117XMD	
7703401YA	U3158	IP117K-DESC	M38510/11704BYX
	60264	MTLM117QK	
	<u>3</u> /	LM117K/883	
	34333	SG117K/883B	
	3/	LM117K/883B	
	69210	OM1320NKM	
	3/	SDP117YMD	
7703401ZA	U3158	IP117R-DESC	
	34333	SG117R/883B	1
77034012A	3/	UC117L/883BC	
	60264	MTLM117QLS	1
	3/	SDP1172MD	1
	34333	SG117L/883B	1
	3/	OM1320N2M	1
77034015A	U3158	IP117E	
7703402MA	<u>3</u> /	SDP117HVMMD	
	69 2 10	OM1321SMM	1
7703402NA	3/	SDP117HVNMD	
	69210	OM1321NMM	1
7703402TA	U3158	IP117HVG-DESC	
	34333	SG117HVG-DESC	1
	3/	SDP117HVTMD	1
	69210	OM1321NTM	1

04	Manadan	Manadan	Deference
Standard microcircuit drawing	Vendor CAGE	Vendor similar	Reference military specification
PIN <u>1</u> /	number	PIN 2/	PIN
7703402UA	U3158	IP117HVIG-DESC	1 114
7700402070	34333	SG117HVIG-DESC	1
	60264	MTLM117HVQP	1
	3/	SDP117HVUMD	1
	3/	FM117HVS7/883	1
	69210	OM1321STM	1
7703402XA	U3158	IP117MHVH-DESC	
	34333	SG117HVT/883B	1
	60264	MTLM117HVQH	1
	3/	LM117HVH/883B	1
	3/	OM1321NHM	1
	3/	SDP117HVXMD	1
7703402YA	U3158	IP117HVK-DESC	
7700102170	34333	SG117HVK-DESC	1
	60264	MTLM117HVQK	†
	3/	LM117HVK/883	†
	3/	LM117HVK/883B	†
	69210	OM1321NKM	†
	3/	SDP117HVYMD	1
7703402ZA	U3158	IP117HVR-DESC	
1105 1 022A	60264	MTLM117HVQR	1
77034022A	34333	SG117HVL/883B	
11034022A	60264	MTLM117HVQLS	1
	3/	SDP117HV2MD	-
	3/	OM1321N2M	-
77024025 \	<u>3</u> / U3158	IP117HVE	
77034025A 7703403MA	3/	SDP137MMD	
7703403IVIA	<u>3/</u>	OM1322SMM	-
7703403NA	3/	SDP137NMD	
7703403NA	<u>3</u> /	OM1322NMM	1
7703403TA	<u>3</u> / U3158	IP137G-DESC	
77034031A	34333		-
		SG137G/883B	-
	<u>3/</u> 3/	SDP137TMD OM1322NTM	-
7702402114			
7703403UA	U3158 60264	IP137IG-DESC MTLM137QP	-
			4
	<u>3</u> /	SDP137UMD	4
	<u>3</u> /	FM137S7/883	4
	34333	SG137IG/883B	4
770240274	<u>3</u> /	OM1322STM	M20540/44000DVV
7703403XA	U3158	IP137MH-DESC	M38510/11803BXX
	60264	MTLM137QH	-
	<u>3</u> /	LM137H/883B	-
	34333	SG137T/883B	-
	<u>3</u> /	LM137H/883B	-
7700 (00) (1	3/	SDP137XMD	M00540/44004520/
7703403YA	U3158	IP137K-DESC	M38510/11804BYX
	60264	MTLM137QK	-
	3/	LM137K/883B	-
	34333	SG137K/883B	
	<u>3</u> /	LM137K-883B	_
	<u>3</u> /	OM1322NKM	_
	<u>3</u> /	SDP137YMD	

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN <u>2</u> /	PIN
7703403ZA	U3158	IP137R-DESC	
	60264	MTLM137QR SG137R/883B	_
770240224	34333		
77034032A	<u>3</u> /	SDP1372MD	4
	60264	MTLM137QLS	_
	34333	SG137L/883B	_
770240204	<u>3</u> /	OM1322N2M	
77034036A	U3158	IP137E	
7703404MA	<u>3</u> /	SDP137HVMMD	_
7702404814	<u>3</u> /	OM1323SMM	
7703404NA	<u>3</u> /	SDP137HVNMD	_
770240474	<u>3</u> /	OM1323NMM	
7703404TA	U3158	IP137HVG-DESC	
	<u>3</u> /	SDP137HVTMD	
7700404114	<u>3</u> /	OM1323NTM	
7703404UA	U3158	IP137HVIG-DESC	Ĭ
	60264	MTLM137HVQP	4
	<u>3</u> /	SDP137HVUMD	4
	<u>3</u> /	FM137HV/883	4
7700 10 11/1	3/	OM1323STM	
7703404XA	U3158	IP137HVH-DESC	
	60264	MTLM137HVQH	
	<u>3</u> /	LM137HVH/883	1
	<u>3</u> /	LM137HVH/883	_
	<u>3</u> /	SDP137HVXMD	
7703404YA	U3158	IP137HVK-DESC	1
	60264	MTLM137HVQK	
	<u>3</u> /	LM137HVK/883	
	<u>3</u> /	LM137HVK/883B	
	<u>3</u> /	OM1323NKM	
	<u>3</u> /	SDP137HVYMD	
7703404ZA	U3158	IP137HVR-DESC	
	60264	MTLM137HVQR	
77034042A	60264	MTLM137HVQLS	
	<u>3</u> /	SDP137HV2MD	
	<u>3</u> /	OM1323N2M	
77034046A	U3158	IP137HVE	
7703405MA	<u>3/</u>	SDP117AMMD	1
	60264	MTLT117AQM	Ţ
	69210	OM1324SMM	
7703405NA	<u>3</u> /	SDP117ANMD	1
	69210	OM1324NMM	
7703405TA	U3158	IP117AG-DESC	1
	<u>3/</u>	SDP117ATMD	Ţ
	69210	OM1324NTM	1
	34333	SG117AG/883B	
7703405UA	U3158	IP117AIG-DESC	1
	60264	MTLT117AQP	1
	<u>3/</u>	SDP117AUMD	Í
	<u>3/</u>	FM117AS7	
	34333	SG117AIG/883B	1
	69210	OM1324STM	
7703405XA	U3158	IP117MAH-DESC	_
	34333	SG117AT/883B]
	60264	MTLT117AQH]
	<u>3/</u>	LT117AH/883B	
	3/	SDP117AXMD	

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN 2/	PIN
7703405YA	U3158	IP117AK-DESC	
	34333	SG117AK/883B	
	60264	MTLT117AQK	1
	3/	LT117AK/883B	1
	69210	OM1324NKM	
	3/	SDP117AYMD	1
7703405ZA	U3158	IP117AR-DESC	
	34333	SG117AR/883B	1
	60264	MTLT117AQR	1
77034052A	<u>3</u> /	UC117AL/883BC	
	3/	SDP117A2MD	1
	34333	SG117AL/883B	1
	60264	MTLT117AQLS	1
	3/	OM1324N2M	1
77034055A	U3158	IP117AE	
7703406MA	60264	MTLT137AQM	
	3/	SDP137AMMD	1
	3/	OM1325SMM	1
7703406NA	3/	SDP137ANMD	
	3/	OM1325NMM	1
7703406TA	U3158	IP137AG-DESC	
	34333	SG137AG/883B	1
	<u>3</u> /	SDP137ATMD	1
	3/	OM1325NTM	1
7703406UA	U3158	IP137AIG-DESC	
	60264	MTLT137AQP	1
	<u>3</u> /	SDP137AUMD	1
	<u>3</u> /	FM137AS7	
	34333	SG137AIG/883B	
	<u>3</u> /	OM1325STM	
7703406XA	U3158	IP137AH-DESC	
	34333	SG137AT/883B	
	60264	MTLT137AQH	
	<u>3</u> /	LT137AH/883B	
	<u>3</u> /	SDP137AXMD	
7703406YA	U3158	IP137AK-DESC	
	34333	SG137AK/883B	
	60264	MTLT137AQK	
	<u>3</u> /	LT137AK/883B	
	<u>3</u> /	OM1325NKM	
	<u>3</u> /	SDP137AYMD	
7703406ZA	U3158	IP137AR-DESC	
	34333	SG137AR/883B	
	60264	MTLT137AQR	
77034062A	<u>3</u> /	SDP137A2MD	
	34333	SG137AL/883B	
	60264	MTLT137AQLS	
	<u>3</u> /	OM1325N2M	
77034066A	U3158	IP137AE	
7703407MA	<u>3/</u>	SDP117AHVMMD	
	69210	OM1326SMM	
7703407NA	<u>3/</u>	SDP117AHVNMD	
	69210	OM1326NMM	

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN <u>2</u> /	PIN
7703407TA	U3158	IP117AHVG-DESC	
	34333	SG117AHVG-DESC	
	<u>3</u> /	SDP117AHVTMD	
	69210	OM1326NTM	
7703407UA	U3158	IP117AHVIG-DESC	
	34333	SG117AHVIG-DESC	
	60264	MTLM117AHVQP	
	<u>3</u> /	SDP117AHVUMD	
	<u>3</u> /	FM117AHVS7	
	69210	OM1326STM	
7703407XA	U3158	IP117MAHVH-DESC	
	60264	MTLM117AHVQH	
	<u>3</u> /	LT117AHVH/883B	
	<u>3</u> /	OM1326NHM	
	<u>3</u> /	SDP117AHVXMD	
7703407YA	U3158	IP117AHVK-DESC	
	34333	SG117AHVK-DESC	
	60264	MTLM117AHVQK	
	<u>3</u> /	LT117AHVK/883B	
	69210	OM1326NKM	
	<u>3</u> /	SDP117AHVYMD	
7703407ZA	U3158	IP117AHVR-DESC	
	60264	MTLM117AHVQR	
77034072A	60264	MTLM117AHVQLS	
	<u>3</u> /	SDP117AHV2MD	
	<u>3</u> /	OM1326N2M	
77034074A	69210	OM1326SRM	
	60264	MTLM117AHVQU	
77034075A	U3158	IP117AHVE	
7703408MA	3/	SDP137AHVMMD	
110010011111	3/	OM1327SMM	
7703408NA	3/	SDP137AHVNMD	
7700100141	3/	OM1327NMM	
7703408TA	<u>u</u> U3158	IP137AHVG-DESC	
7700400170	3/	SDP137AHVTMD	
	3/	OM1327NTM	
7703408UA	U3158	IP137AHVIG-DESC	
11034000A	60264	MTLM137AHVQP	
	3/	SDP137AHVUMD	
	<u>3</u> /	FM137AHV/883	
	<u>3</u> /	OM1327STM	
7702400 V A	<u>3</u> / U3158		
7703408XA		IP137AHVH-DESC	
	60264	MTLM137AHVQH	
	<u>3</u> /	LT137AHVH/883B	
7700400\/A	<u>3</u> /	SDP137AHVXMD	
7703408YA	U3158	IP137AHVK-DESC	
	60264	MTLM137AHVQK	
	<u>3</u> /	LT137AHVK/883B	
	<u>3</u> /	OM1327NKM	
	<u>3</u> /	SDP137AHVYMD	
7703408ZA	U3158	IP137AHVR-DESC	
	60264	MTLM137AHVQR	
77034082A	60264	MTLM137AHVQLS	
	<u>3</u> /	SDP137AHV2MD	
<u></u>	<u>3</u> /	OM1327N2M	
77034086A	U3158	IP137AHVE	

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN <u>2</u> /	PIN
5962-7703404VXA	<u>3</u> /	LM137HVH-QMLV	
5962-7703404VYA	<u>3</u> /	LM137HVK-QMLV	
5962R7703402MUA	<u>3</u> /	OMR1321STM/883B	
5962R7703407MUA	<u>3</u> /	OMR1326STM/883B	

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGEnumber_	Vendor name and address
U3158	SEMELAB PLC Coventry Road, Lutterworth, Leicestershire LE174JB United Kingdom
34333	Microsemi Analog Mixed Signal Group 11861 Western Avenue Garden Grove, CA 92841-2119
69210	International Rectifier 205 Crawford Street Leominster, MA 01453-2353
60264	Minco Technology Labs, Inc. 1805 Rutherford Lane Austin, TX 78754-5101

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.