

12-Bit-ADC with **Microprocessor Interface**

AD574S

1.0 **SCOPE**

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

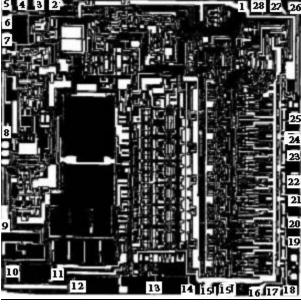
The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD574

Part Number. The complete part number(s) of this specification follow: 2.0

> Part Number Description

AD574-000C 12-Bit-ADC with Microprocessor Interface


AD574R000C Radiation Tested 12-Bit-ADC with Microprocessor Interface

3.0 Die Information

3.1 **Die Dimensions**

Die Size	Die Thickness	Bond Pad Metalization
179 x 180	19 mil ± 2 mil	Al/Cu

Die Picture 3.2

or otherwise under any patent or patent rights of Analog Devices. Trademarks and

registered trademarks are the property of their respective companies.

10 11 13 14 jejie 16 17 18	
ASD0012706 Rev. J Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication	One Techn

$1 V_{LOGIC}$	28 STATUS
$2 \frac{12}{8}$	27 DB11
	26 DB10
3 CS	25 DB9
$\frac{4}{5} \frac{A_0}{R}$	24 DB8
5 R/C	23 DB7
6 CE	22 DB6
$7 V_{CC}$	21 DB5
8 REF _{OUT}	20 DB4
9 AC	19 DB3
10 REF_{IN}	19 DB3 18 DB2
$11 V_{EE}$	-
12 BIP OFF	17 DB1
$13\ 10V_{IN}$	16 DB0
$14.20V_{\rm IN}$	15 DC

3.3 Absolute Maximum Ratings

V _{CC} to Digital Common	0 to +16.5V dc
V _{EE} to Digital Common	
V _{LOG} to Digital Common	0 to +7V dc
Analog to Digital Common	±1V dc
Control Inputs (CE, \overline{CS} , Ao, 12/8, R/ \overline{C}) to Digital Common	0.5V dc to
	V_{LOG} +0.5V dc
Analog Inputs (REF IN, BIP OFF, 10 V _{IN}) to Analog Common	\dots V _{EE} to V _{CC}
20 V _{IN} Analog Input Voltage to Analog Common	±24V dc
V _{ref out}	Indefinite short to
	short to V _{CC}
Storage Temperature	65°C to +150°C
Junction Temperature (T _J)	+175°C
Operating Temperature Range	55°C to +125°C

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package Ceramic DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics							
Parameter	Symbol	Conditions <u>1/</u>	Limit Min	Limit Max	Units		
Power Supply Current From V _{LOG}	llog			40	mA		
Power Supply Current From Vcc	lcc			5	mA		
Power Supply Current From VEE	lee		-30		mA		
Resolution			12		Bits		
Integral Linearity Error Differential Linearity Error (Minimum Resolution For Which No Missing Codes Guaranteed)	ILE DLE		-0.5 12	0.5	LSB Bits		
Unipolar Offset Voltage Error	V _{IO}		-2.0	2.0	LSB		

Table I – Dice Electrical Characteristics (Continued)							
Parameter	Symbol	Conditions <u>1</u> /	Limit Min	Limit Max	Units		
Bipolar Offset Voltage Error	Bz		-4.0	4.0	LSB		
Gain Error	ΔΑε	With 50Ω resistor from REF OUT to REF IN		.25	% of F.S.		
Power Supply Sensitivity	+P _{SS1} +P _{SS2}	$+13.5V \le V_{CC} \le +16.5V$ $+11.4V \le V_{CC} \le +12.6V$	-1.0	1.0			
(Maximum Change In Full Scale	+P _{SS3}	$+4.5V \le V_{LOG} \le +5.5V$	-0.5	0.5	LSB		
Calibration)	-P _{SS1}	-16.5V ≤ V _{EE} ≤ -13.5V	$-16.5V \le V_{EE} \le -13.5V$				
	-P _{SS2}	-12.6V ≤ V _{EE} ≤ -11.4V	-1.0	1.0			
Input Impedance	Z _{IN}	10V span	3	7	kΩ		
input impedance	ZIN	20V span	6	14	KL2		
Internal Reference Voltage	V _{REF}	<u>2</u> /	9.98	10.02	V		
Input Voltage (CE, $\overline{ ext{CS}}$,	V _{IH}	Logic "1"	2.0	5.5			
12/8, R/ $\overline{\overline{C}}$, Ao) $\underline{3}$ /	VIL	Logic "0"	-0.5	0.8	V		
Input Current	I _{IN}		-20	+20	μΑ		
Output Voltage (DB11-DB0,STS)	V _{OL}	Logic "0", I _{SINK} =+1.6mA		400	mV		
Output Voltage (DB11-DB0)	V _{OH}	Logic "1", Isourc=+500μA	2.4		V		
High Impedance State Output Current	Iz	High-Z state, DB11 – DB0 only	-20	+20	μА		

Table I Notes:

- $V_{\text{CC}} = \pm 15 \text{V}, \ V_{\text{LOG}} = +5 \text{V}, \ V_{\text{EE}} = -15 \text{V}, \ T_{\text{A}} = 25 ^{\circ}\text{C}, \ \text{unless otherwise specified}.$ The reference voltage external load current shall be a constant dc and shall not exceed 1.5 mA. Reference should be buffered for operation of $\pm 12 \text{V}$ supplies. External load should not change during conversion. <u>1/</u> <u>2</u>/
- <u>3</u>/ 12/8 is not TTL compatible and must be hard wired to $\ensuremath{V_{LOG}}$ or digital ground.

AD574S

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1</u> /		Sub- groups	Limit Min	Limit Max	Units
De la Caral Caral Frank				1, 2, 3		40	
Power Supply Current From V _{LOG}	I _{LOG}		M, D, L, R <u>5</u> /	1		40	
Power Supply Current From				1, 2, 3		5	A
V_{cc}	lcc		M, D, L, R <u>5</u> /	1		5	− mA
Power Supply Current From				1, 2, 3	-30		
V_{EE}	I _{EE}		M, D, L, R <u>5</u> /	1	-30		
				1	-0.5	0.5	
Integral Linearity Error	ILE			2, 3	-1.0	1.0	LSB
			M, D, L, R <u>5</u> /	1	-1.0	1.0	
Differential Linearity Error (Minimum	51.5			1	12		5
Resolution For Which No Missing Codes Guaranteed) <u>6</u> /	DLE			2, 3	12		Bits
		Using interr	nal reference	1	-2.0	2.0	
Unipolar Offset Voltage Error	V _{IO}		M, D, L, R <u>5</u> /	1	-3.0	3.0	
Unipolar Offset Drift <u>6</u> /	$\frac{\Delta V_{IO}}{\Delta T}$	Using internal reference		2, 3	-1.0	1.0	
	_	Using interr	nal reference	1	-4.0	4.0	LSB
Bipolar Offset Voltage Error	Bz		M, D, L, R <u>5</u> /	1	-5.0	5.0	
Bipolar Zero Offset Drift <u>6</u> /	$\frac{\Delta B_Z}{T}$	Using interr	nal reference	2, 3	-2.0	+2.0	
Gain Error	Δ Αε		or from REF OUT EF IN	1		.25	% of F.S.
			M, D, L, R <u>5</u> /	1		.35	
Gain Error Drift <u>6</u> /	$\frac{\Delta A_E}{\Delta T}$	Using interr	Using internal reference		-25.0	25.0	ppm/°C
	+P _{SS1}	+13.5V ≤ V _{CC} ≤ +16.5V					
	+P _{SS2}	+11.4V ≤ V _{CC} ≤ +12.6V		1	-1.0	1.0	
Power Supply Sensitivity (Maximum Change In Full Scale Calibration) <u>6</u> /	+P _{SS3}	+4.5V ≤ V _{LOG} ≤ +5.5V		1	-0.5	0.5	LSB
	-P _{SS1}	-16.5V≤V	_{ree} ≤ -13.5V				
	-P _{SS2}		_{ZEE} ≤ -11.4V	1	-1.0	1.0	
		10V span		1	3	7	
Input Impedance <u>6</u> /	Z _{IN} 20V span		1	6	14	kΩ	

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol Conditions 1/		Sub- groups	Limit Min	Limit Max	Units	
Output Voltage (DB11-DB0, STS) <u>6</u> /	V _{OL}	Logic "0", $T_A = +25$ °C, $I_{SINK} = +1.6$ mA	1, 2, 3		400	mV	
Output Voltage (DB11-DB0) <u>6</u> /	Vон	Logic "1", T _A = +25°C, I _{SOURCE} = +500μA	1	2.4		V	
High Impedance State Output Current <u>6</u> /	lz	High-Z state, $T_A = +25^{\circ}C$, DB11-DB0 only	1	-20	+20	μА	
Low R/ \overline{C} Pulse Width $4/6$	t _{HRL}		9	250		ns	
STS Delay from R/ \overline{C} 4/6/	t _{DS}		9		600	ns	
Data Valid After R/ \overline{C} Low $\underline{4}/\underline{6}/$	t hdr		9		25	ns	
STS Delay After Valid Data <u>4</u> / <u>6</u> /	t HS		9	300	1000	ns	
High R/ \overline{C} Pulse Width $\underline{6}$ /	t _{HRH}		9	300		ns	
Data Access Time <u>6</u> /	t _{DDR}		9		250	ns	
STS Delay from CE <u>6</u> /	t _{DSC}		9		350	ns	
CE Pulse Width 6/	t hec		9	300		ns	
Conversion Time 6/	+-	8-bit cycle 9 10		24			
Conversion time o/	t c -	12-bit cycle	9	15	35	μS	
Access Time (from CE) <u>6</u> /	t _{DD}		9		200	ns	

Table II Notes:

 $[\]underline{1}/ \hspace{1cm} V_{CC} = \pm 15 \text{V}, \ V_{LOG} = +5 \text{V}, \ V_{EE} = -15 \text{V}, \ -55 ^{\circ}\text{C} \leq T_{A} \leq +125 ^{\circ}\text{C}, \ unless otherwise specified}.$

The reference voltage external load current shall be a constant dc and shall not exceed 1.5 mA. Reference sho<u>uld be buffered for operation of ±12V supplies.</u> External load should not change during conversion.

 $[\]underline{3}$ / 12/8 is not TTL compatible and must be hard wired to V_{LOG} or digital ground.

 $[\]underline{4}$ Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits.

^{5/} Tested at 100Krad

^{6/} Not Tested Post Irradiation.

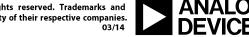

AD574S

Table III - Delta Parameter Table								
Parameter	Cala al	Sub-	Post Burn In Limit		Post Life Test Limit		Life Test	l locito
raiametei	Symbol	groups	Min	Max	Min	Max	Delta	Units
Unipolar Offset Voltage Error	Uni V _{IO}	1	-2.0	2.0	-2.5	2.5	±0.5	LSB
Bipolar Offset Voltage Error	Bpze	1	-4.0	4.0	-5.0	5.0	±1.0	LSB
Gain Error	A _E	1	-0.25	0.25	-0.25	0.35	±.10	%FSR

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	04-Oct-2001
В	Update web address	Jan. 25, 2002
С	Update web address. Add Radiation limits and part number.	4-Mar-03
D	Update 1.0 Scope description.	2 Aug. 2007
Е	Update header/footer & add to 1.0 Scope description.	Feb. 14, 2008
F	Remove reference to condition <u>5</u> / note on Table I & add Junction Temperature (T _J) +175°C & Operating Temperature Range55°C to +125°C to Section 3.3-Absolute Max. Ratings	March 27, 2008
G	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	6-JUN-2009
Н	Updated Font and Font Size to Standardize to ADI format	20-Sep-2011
I	Correct typo from mA to mV in output voltage of table II	17-MAR-2014
J	Append S to Aerospace Generic Title	21-Mar-2014

www.analog.com