FEATURES

5 V Stereo Audio System with 3.3 V Tolerant Digital Interface
Supports up to 96 kHz Sample Rates
192 kHz Sample Rate Available on 1 DAC
Supports 16-/20-/24-Bit Word Lengths
Multibit $\mathbf{\Sigma}-\Delta$ Modulators with
Perfect Differential Linearity Restoration for
Reduced Idle Tones and Noise Floor
Data Directed Scrambling DACs-Least
Sensitive to Jitter
Differential Output for Optimum Performance
ADCs: -95 dB THD + N, 105 dB SNR, and Dynamic Range
DACs: -95 dB THD + N, 108 dB SNR, and Dynamic Range
On-Chip Volume Controls per Channel with 1024-Step Linear Scale
DAC and ADC Software Controllable Clickless Mutes
Digital De-emphasis Processing

Supports $256 \times \mathrm{f}_{\mathrm{s}}, 512 \times \mathrm{f}_{\mathrm{s}}$, and $768 \times \mathrm{f}_{\mathrm{S}}$ Master Mode Clocks
Power-Down Mode Plus Soft Power-Down Mode
Flexible Serial Data Port with Right-Justified, Left-
Justified, I ${ }^{2}$ S Compatible, and DSP Serial Port Modes
TDM Interface Mode Supports 8-In/8-Out Using a
Single SHARC ${ }^{\circledR}$ SPORT
52-Lead MOFP Plastic Package

APPLICATIONS

DVD Video and Audio Players
Home Theater Systems
Automotive Audio Systems
Audio/Visual Receivers
Digital Audio Effects Processors

PRODUCT OVERVIEW

The AD1835A is a high performance, single-chip codec featuring four stereo DACs and one stereo ADC. Each DAC comprises a high performance digital interpolation filter, a multibit $\Sigma-\Delta$ modulator featuring Analog Devices' patented technology, and a continuous-time voltage out analog section.
(continued on page 11)

FUNCTIONAL BLOCK DIAGRAM

REV. A

[^0]
AD1835A-SPECIFICATIONS

TEST CONDITIONS

Supply Voltages (AVDD, DVDD)	5.0 V
Ambient Temperature	$25^{\circ} \mathrm{C}$
Input Clock	$12.288 \mathrm{MHz}\left(256 \times \mathrm{f}_{\mathrm{S}}\right.$ Mode)
ADC Input Signal	$1.0078125 \mathrm{kHz},-1 \mathrm{dBFS}$ (Full Scale)
DAC Input Signal	$1.0078125 \mathrm{kHz}, 0 \mathrm{dBFS}$ (Full Scale)
Input Sample Rate (f f_{S})	48 kHz
Measurement Bandwidth	20 Hz to 20 kHz
Word Width	24 Bits
Load Capacitance	100 pF
Load Impedance	$47 \mathrm{k} \Omega$

Performance of all channels is identical (exclusive of the Interchannel Gain Mismatch and Interchannel Phase Deviation specifications).

Parameter	Min	Typ	Max	Unit
ANALOG-TO-DIGITAL CONVERTERS ADC Resolution Dynamic Range (20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ Input) No Filter A-Weighted (48 kHz and 96 kHz) Total Harmonic Distortion + Noise (THD + N) 48 kHz 96 kHz Interchannel Isolation Interchannel Gain Mismatch Analog Inputs Differential Input Range (\pm Full Scale) Common-Mode Input Voltage Input Impedance Input Capacitance $\mathrm{V}_{\text {REF }}$ DC Accuracy Gain Error Gain Drift	100 -2.828	24 103 105 -95 -95 100 0.025 2.25 4 15 2.25 ± 5 35	$\begin{aligned} & -88.5 \\ & -87.5 \end{aligned}$ $+2.828$	Bits dB dB dB dB dB dB V V $\mathrm{k} \Omega$ pF V $\%$ $\%$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Dynamic Range (20 Hz to $20 \mathrm{kHz},-60 \mathrm{dBFS}$ Input) No Filter With A-Weighted Filter (48 kHz and 96 kHz) Total Harmonic Distortion + Noise (48 kHz and 96 kHz) Interchannel Isolation DC Accuracy Gain Error Interchannel Gain Mismatch Gain Drift Interchannel Crosstalk (EIAJ Method) Interchannel Phase Deviation Volume Control Step Size (1023 Linear Steps) Volume Control Range (Maximum Attenuation) Mute Attenuation De-emphasis Gain Error Full-Scale Output Voltage at Each Pin (Single-Ended) Output Resistance at Each Pin Common-Mode Output Voltage	$\begin{aligned} & 103 \\ & 105 \end{aligned}$	$\begin{aligned} & 24 \\ & 105 \\ & 108 \\ & -95 \\ & 110 \\ & \\ & \pm 4.0 \\ & 0.025 \\ & 200 \\ & -120 \\ & \pm 0.1 \\ & 0.098 \\ & 60 \\ & -100 \\ & \pm 0.1 \\ & 1.0(2.8) \\ & 180 \\ & 2.25 \end{aligned}$	-90	Bits dB dB dB dB \% dB ppm $/{ }^{\circ} \mathrm{C}$ dB Degrees \% dB dB dB V rms (V p-p) Ω V
ADC DECIMATION FILTER, 48 kHz * Pass Band Pass-Band Ripple Stop Band Stop-Band Attenuation Group Delay		$\begin{aligned} & 21.77 \\ & \pm 0.01 \\ & 26.23 \\ & 120 \\ & 910 \end{aligned}$		kHz dB kHz dB $\mu \mathrm{S}$

Parameter	Min	Typ	Max	Unit
ADC DECIMATION FILTER, 96 kHz* Pass Band Pass-Band Ripple Stop Band Stop-Band Attenuation Group Delay		$\begin{aligned} & 43.54 \\ & \pm 0.01 \\ & 52.46 \\ & 120 \\ & 460 \end{aligned}$		kHz dB kHz dB $\mu \mathrm{s}$
DAC INTERPOLATION FILTER, 48 kHz Pass Band Pass-Band Ripple Stop Band Stop-Band Attenuation Group Delay	$\begin{aligned} & 28 \\ & 55 \end{aligned}$	$\begin{aligned} & \pm 0.06 \\ & 340 \end{aligned}$	21.77	kHz dB kHz dB $\mu \mathrm{s}$
DAC INTERPOLATION FILTER, 96 kHz * Pass Band Pass-Band Ripple Stop Band Stop-Band Attenuation Group Delay	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	$\begin{aligned} & \pm 0.06 \\ & 160 \end{aligned}$	43.54	kHz dB kHz dB $\mu \mathrm{S}$
DAC INTERPOLATION FILTER, 192 kHz* Pass Band Pass-Band Ripple Stop Band Stop-Band Attenuation Group Delay	$\begin{aligned} & 97 \\ & 80 \end{aligned}$	$\begin{aligned} & \pm 0.06 \\ & 110 \end{aligned}$	81.2	kHz dB kHz dB $\mu \mathrm{S}$
DIGITAL I/O Input Voltage High Input Voltage Low Output Voltage High Output Voltage Low Leakage Current	$\begin{aligned} & 2.4 \\ & \text { ODVDD - } 0.4 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \end{aligned}$
POWER SUPPLIES Supply Voltage (AVDD and DVDD) Supply Voltage (ODVDD) Supply Current $\mathrm{I}_{\text {ANaLog }}$ Supply Current $\mathrm{I}_{\text {Analog, }}$, Power-Down Supply Current $\mathrm{I}_{\text {DIGITAL }}$ Supply Current $\mathrm{I}_{\text {Digital }}$, Power-Down Dissipation Operation, Both Supplies Operation, Analog Supply Operation, Digital Supply Power-Down, Both Supplies Power Supply Rejection Ratio $1 \mathrm{kHz}, 300 \mathrm{mV}$ p-p Signal at Analog Supply Pins $20 \mathrm{kHz}, 300 \mathrm{mV}$ p-p Signal at Analog Supply Pins	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 84 \\ & 55 \\ & 64 \\ & 1 \\ & 740 \\ & 420 \\ & 320 \\ & 280 \\ & \\ & -70 \\ & -75 \end{aligned}$	5.5 DVDD 95 67 74 4.5	V V mA mA mA mA mW mW mW mW dB dB

[^1]Specifications subject to change without notice.

TIMING SPECIFICATIONS

Parameter		Min	Max	Unit	Comments
MASTER CLOCK AND RESET					
t_{MH}	MCLK High	15		ns	
$\mathrm{t}_{\text {ML }}$	MCLK Low	15		ns	
$\mathrm{t}_{\text {PDR }}$	$\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ Low	20		ns	
SPI ${ }^{\text {® }}$ PORT					
$\mathrm{t}_{\mathrm{CCH}}$	CCLK High	40		ns	
$\mathrm{t}_{\mathrm{CCL}}$	CCLK Low	40		ns	
$\mathrm{t}_{\mathrm{CCP}}$	CCLK Period	80		ns	
$\mathrm{t}_{\text {CDS }}$	CDATA Setup	10		ns	To CCLK Rising
$\mathrm{t}_{\text {CDH }}$	CDATA Hold	10		ns	From CCLK Rising
$\mathrm{t}_{\text {CLS }}$	CLATCH Setup	10		ns	To CCLK Rising
${ }^{\text {che }}$	CLATCH Hold	10		ns	From CCLK Rising
$\mathrm{t}_{\text {COE }}$	COUT Enable		15	ns	From CLATCH Falling
${ }_{\text {t }}^{\text {COD }}$	COUT Delay		20	ns	From CCLK Falling
$\mathrm{t}_{\mathrm{COTS}}$	COUT Three-State		25	ns	From CLATCH Rising
DAC SERIAL PORT (48 kHz and 96 kHz)					
Normal Mode (Slave)					
$\mathrm{t}_{\text {DBH }}$	DBCLK High	60		ns	
$\mathrm{t}_{\text {DBL }}$	DBCLK Low	60		ns	
f_{DB}	DBCLK Frequency	$64 \times \mathrm{f}_{\text {S }}$			
$\mathrm{t}_{\text {DLS }}$	DLRCLK Setup	10		ns	To DBCLK Rising
$\mathrm{t}_{\text {DLH }}$	DLRCLK Hold	10		ns	From DBCLK Rising
$\mathrm{t}_{\text {DDS }}$	DSDATA Setup	10		ns	To DBCLK Rising
$\mathrm{t}_{\text {DDH }}$	DSDATA Hold	10		ns	From DBCLK Rising
Packed 128/256 Modes (Slave)					
$\mathrm{t}_{\text {DBH }}$	DBCLK High	15		ns	
$\mathrm{t}_{\text {DBL }}$	DBCLK Low	15		ns	
$\mathrm{f}_{\text {DB }}$	DBCLK Frequency	$256 \times \mathrm{f}_{\text {S }}$		ns To DBCLK Rising	
$\mathrm{t}_{\text {DLS }}$	DLRCLK Setup	10			
$\mathrm{t}_{\text {DLH }}$	DLRCLK Hold	10		ns ns	From DBCLK Rising
$\mathrm{t}_{\text {DDS }}$	DSDATA Setup	10		ns ns	To DBCLK Rising
$\mathrm{t}_{\mathrm{DDH}}$	DSDATA Delay	10		ns	From DBCLK Rising
ADC SERIAL PORT (48 kHz and 96 kHz)					
Normal Mode (Master)					
$\mathrm{t}_{\text {ABD }}$	ABCLK Delay		25	ns	From MCLK Rising Edge
$\mathrm{t}_{\mathrm{ALD}}$	ALRCLK Delay Low		5	ns	From ABCLK Falling Edge
$\mathrm{t}_{\mathrm{ABDD}}$	ASDATA Delay		10	ns	From ABCLK Falling Edge
Normal Mode (Slave)					
$\mathrm{t}_{\text {ABH }}$	ABCLK High	60		ns	
$\mathrm{t}_{\text {ABL }}$	ABCLK Low	60		ns	
$\mathrm{f}_{\text {AB }}$	ABCLK Frequency	$64 \times \mathrm{f}_{\text {S }}$		ns	
$\mathrm{t}_{\text {ALS }}$	ALRCLK Setup	5			To ABCLK Rising From ABCLK Rising From ABCLK Falling Edge
$\mathrm{t}_{\text {aLh }}$	ALRCLK Hold	15	15	nsns	
$\mathrm{t}_{\text {ABDD }}$	ASDATA Delay				
Packed 128/256 Mode (Master)					
$\mathrm{t}_{\text {PABD }}$	ABCLK Delay		40	ns	From MCLK Rising Edge
$\mathrm{t}_{\text {PaLD }}$	LRCLK Delay		5	ns	From ABCLK Falling Edge
$\mathrm{t}_{\text {PABDD }}$	ASDATA Delay		10	ns	From ABCLK Falling Edge

Parameter	Min	Max	Unit	Comments
TDM256 MODE (Master, 48 kHz and 96 kHz) $\mathrm{t}_{\mathrm{TBD}}$ BCLK Delay $\mathrm{t}_{\mathrm{FSD}}$ FSTDM Delay $\mathrm{t}_{\mathrm{TABDD}}$ ASDATA Delay $\mathrm{t}_{\mathrm{TDDS}}$ DSDATA1 Setup $\mathrm{t}_{\mathrm{TDDH}}$ DSDATA1 Hold	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ ns	From MCLK Rising From BCLK Rising From BCLK Rising To BCLK Falling From BCLK Falling
	$\begin{aligned} & 256 \times \mathrm{f}_{\mathrm{S}} \\ & 17 \\ & 17 \\ & 10 \\ & 10 \\ & \\ & 15 \\ & 15 \end{aligned}$	15	ns ns ns ns ns ns ns	To BCLK Falling From BCLK Falling From BCLK Rising To BCLK Falling From BCLK Falling
TDM512 MODE (Master, 48 kHz$)$ $\mathrm{t}_{\text {TBD }}$ BCLK Delay $\mathrm{t}_{\text {FSD }}$ FSTDM Delay $\mathrm{t}_{\text {TABDD }}$ ASDATA Delay $\mathrm{t}_{\mathrm{TDDS}}$ DSDATA1 Setup $\mathrm{t}_{\mathrm{TDDH}}$ DSDATA1 Hold	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ ns	From MCLK Rising From BCLK Rising From BCLK Rising To BCLK Falling From BCLK Falling
TDM512 MODE (Slave, 48 kHz) f_{AB} BCLK Frequency $\mathrm{t}_{\mathrm{TBCH}}$ BCLK High $\mathrm{t}_{\mathrm{TBCL}}$ BCLK Low $\mathrm{t}_{\mathrm{TFS}}$ FSTDM Setup $\mathrm{t}_{\mathrm{TFH}}$ FSTDM Hold $\mathrm{t}_{\mathrm{TBDD}}$ ASDATA Delay $\mathrm{t}_{\mathrm{TDDS}}$ DSDATA1 Setup $\mathrm{t}_{\mathrm{TDDH}}$ DSDATA1 Hold	$\begin{aligned} & 512 \times \mathrm{f}_{\mathrm{S}} \\ & 17 \\ & 17 \\ & 10 \\ & 10 \\ & \\ & 15 \\ & 15 \end{aligned}$	15	ns ns ns ns ns ns ns	To BCLK Falling From BCLK Falling From BCLK Rising To BCLK Falling From BCLK Falling
AUXILIARY INTERFACE (48 kHz and 96 kHz$)$ $\mathrm{t}_{\text {AXDS }}$ AAUXDATA Setup $\mathrm{t}_{\text {AXDH }}$ AAUXDATA Hold $\mathrm{f}_{\text {ABP }}$ AUXBCLK Frequency Slave Mode $\mathrm{t}_{\text {AXBH }}$ AUXBCLK High $\mathrm{t}_{\text {AXBL }}$ AUXBCLK Low $\mathrm{t}_{\text {AXLS }}$ AUXLRCLK Setup $\mathrm{t}_{\text {AXLH }}$ AUXLRCLK Hold Master Mode $\mathrm{t}_{\text {AUXLRCLK }}$ AUXLRCLK Delay $\mathrm{t}_{\text {AUXBCLK }}$ AUXBCLK Delay	$\begin{aligned} & 10 \\ & 10 \\ & 64 \times \mathrm{f}_{\mathrm{S}} \\ & 15 \\ & 15 \\ & 10 \\ & 10 \\ & \\ & 15 \\ & 20 \\ & \hline \end{aligned}$		ns ns	To AUXBCLK Rising From AUXBCLK Rising To AUXBCLK Rising From AUXBCLK Rising From AUXBCLK Falling From MCLK Rising

[^2]

Figure 1. MCLK and $\overline{P D} / \overline{\operatorname{RST}}$ Timing

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)
AVDD, DVDD, ODVDD to AGND, DGND . . -0.3 V to +6.0 V
AGND to DGND . 0.3 V to +0.3 V
Digital I/O Voltage to DGND -0.3 V to ODVDD +0.3 V
Analog I/O Voltage to AGND -0.3 V to AVDD +0.3 V
Operating Temperature Range
Industrial (A Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TEMPERATURE RANGE

Parameter	Min	Typ	Max	Unit
Specifications Guaranteed		25		${ }^{\circ} \mathrm{C}$
Functionality Guaranteed	-40		+85	${ }^{\circ} \mathrm{C}$
Storage	-65		+150	${ }^{\circ} \mathrm{C}$

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD1835AAS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$52-$ Lead MQFP	$\mathrm{S}-52-1$
AD1835AAS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	$\mathrm{S}-52-1$
AD1835AASZ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	$\mathrm{S}-52-1$
AD1835AASZ-REEL*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	S-52-1
EVAL-AD1835AEB		Evaluation Board	

* $\mathrm{Z}=\mathrm{Pb}$-free part.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD1835A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin Number	Mnemonic	Input/ Output	Description
1,39	DVDD		Digital Power Supply. Connect to digital 5 V supply.
2	CLATCH	I	Latch Input for Control Data.
3	CIN	I	Serial Control Input.
4	$\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$	I	Power-Down/Reset.
5, 10, 16, 24, 30, 35	AGND		Analog Ground.
6, 12, 25, 31	OUTLNx	O	DACx Left Channel Negative Output.
7, 13, 26, 32	OUTLPx	O	DACx Left Channel Positive Output.
8, 14, 27, 33	OUTRNx	O	DACx Right Channel Negative Output.
9, 15, 28, 34	OUTRPx	O	DACx Right Channel Positive Output.
11, 19, 29	AVDD		Analog Power Supply. Connect to analog 5 V supply.
17	FILTD		Filter Capacitor Connection. Recommended $10 \mu \mathrm{~F} / 100 \mathrm{nF}$.
18	FILTR		Reference Filter Capacitor Connection. Recommended $10 \mu \mathrm{~F} / 100 \mathrm{nF}$.
20	ADCLN	I	ADC Left Channel Negative Input.
21	ADCLP	I	ADC Left Channel Positive Input.
22	ADCRN	I	ADC Right Channel Negative Input.
23	ADCRP	I	ADC Right Channel Positive Input.
36	$\overline{\mathrm{M}} / \mathrm{S}$	I	ADC Master/Slave Select.
37	DLRCLK	I/O	DAC LR Clock.
38	DBCLK	I/O	DAC Bit Clock.
40, 52	DGND		Digital Ground.
41 to 44	DSDATAx	I	DACx Input Data (Left and Right Channels).
45	ABCLK	I/O	ADC Bit Clock.
46	ALRCLK	I/O	ADC LR Clock.
47	MCLK	I	Master Clock Input.
48	ODVDD		Digital Output Driver Power Supply.
49	ASDATA	O	ADC Serial Data Output.
50	COUT	O	Output for Control Data.
51	CCLK	I	Control Clock Input for Control Data.

TPC 1. ADC Composite Filter Response

TPC 2. ADC High-Pass Filter Response, $f_{S}=48 \mathrm{kHz}$

TPC 3. ADC Composite Filter Response (Pass-Band Section)

TPC 4. ADC High-Pass Filter Response, $f_{S}=96 \mathrm{kHz}$

TPC 5. DAC Composite Filter Response, $f_{S}=48 \mathrm{kHz}$

TPC 6. DAC Composite Filter Response, $f_{S}=96 \mathrm{kHz}$

TPC 7. DAC Composite Filter Response, $f_{S}=192 \mathrm{kHz}$

TPC 8. DAC Composite Filter Response, $f_{S}=48 \mathrm{kHz}$ (Pass-Band Section)

TPC 9. DAC Composite Filter Response, $f_{S}=96 \mathrm{kHz}$ (Pass-Band Section)

TPC 10. DAC Composite Filter Response, $f_{S}=192 \mathrm{kHz}$ (Pass-Band Section)

AD1835A

DEFINITIONS

Dynamic Range

The ratio of a full-scale input signal to the integrated input noise in the pass band (20 Hz to 20 kHz), expressed in decibels (dB). Dynamic range is measured with a -60 dB input signal and is equal to $(\mathrm{S} /[\mathrm{THD}+\mathrm{N}])+60 \mathrm{~dB}$. Note that spurious harmonics are below the noise with a -60 dB input, so the noise level establishes the dynamic range. The dynamic range is specified with and without an A-weight filter applied.

Signal-to-(Total Harmonic Distortion + Noise)[S/(THD + N)]
The ratio of the root-mean-square (rms) value of the fundamental input signal to the rms sum of all other spectral components in the pass band, expressed in decibels (dB).

Pass Band

The region of the frequency spectrum unaffected by the attenuation of the digital decimator's filter.

Pass-Band Ripple

The peak-to-peak variation in amplitude response from equalamplitude input signal frequencies within the pass band, expressed in decibels.

Stop Band

The region of the frequency spectrum attenuated by the digital decimator's filter to the degree specified by stop-band attenuation.

Gain Error

With a near full-scale input, the ratio of actual output to expected output, expressed as a percentage.

Interchannel Gain Mismatch
With identical near full-scale inputs, the ratio of outputs of the two stereo channels, expressed in decibels.

Gain Drift

Change in response to a near full-scale input with a change in temperature, expressed as parts-per-million (ppm) per ${ }^{\circ} \mathrm{C}$.

Crosstalk (EIAJ Method)

Ratio of response on one channel with a grounded input to a full-scale 1 kHz sine wave input on the other channel, expressed in decibels.

Power Supply Rejection

With no analog input, signal present at the output when a 300 mV p-p signal is applied to power supply pins, expressed in decibels of full scale.

Group Delay

Intuitively, the time interval required for an input pulse to appear at the converter's output, expressed in microseconds. More precisely, the derivative of radian phase with respect to radian frequency at a given frequency.

Group Delay Variation

The difference in group delays at different input frequencies. Specified as the difference between the largest and the smallest group delays in the pass band, expressed in microseconds.

GLOSSARY

ADC-Analog-to-Digital Converter.
DAC-Digital-to-Analog Converter.
DSP—Digital Signal Processor.
IMCLK-Internal Master Clock Signal Used to Clock the ADC and DAC Engines.
MCLK—External Master Clock Signal Applied to the AD1835A.

(continued from page 1)

Each DAC has independent volume control and clickless mute functions. The ADC comprises two 24-bit conversion channels with multibit $\Sigma-\Delta$ modulators and decimation filters.
The AD1835A also contains an on-chip reference with a nominal value of 2.25 V .
The AD1835A contains a flexible serial interface that allows glueless connection to a variety of DSP chips, AES/EBU receivers, and sample rate converters. The AD1835A can be configured in left-justified, right-justified, $\mathrm{I}^{2} \mathrm{~S}$, or DSP compatible serial modes. Control of the AD1835A is achieved by an SPI ${ }^{\circledR}$ compatible serial port. While the AD1835A can be operated from a single 5 V supply, it also features a separate supply pin for its digital interface which allows the device to be interfaced to other devices using 3.3 V power supplies.

The AD1835A is available in a 52 -lead MQFP package and is specified for the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL OVERVIEW

ADCs
There are two ADC channels in the AD1835A, configured as a stereo pair. Each ADC has fully differential inputs. The ADC section can operate at a sample rate of up to 96 kHz . The ADCs include on-board digital decimation filters with 120 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 128 (for 48 kHz operation) or 64 (for 96 kHz operation).
ADC peak level information for each ADC may be read from the ADC Peak 0 and ADC Peak 1 registers. The data is supplied as a 6 -bit word with a maximum range of 0 dB to -63 dB and a resolution of 1 dB . The registers will hold peak information until read; after reading, the registers are reset so that new peak information can be acquired. Refer to the register description for details of the format. The two ADC channels have a common serial bit clock and a left-right framing clock. The clock signals are all synchronous with the sample rate.
The ADC digital pins, ABCLK and ALRCLK, can be set to operate as inputs or outputs by connecting the \bar{M} / S pin to ODVDD or DGND, respectively. When the pins are set as outputs, the AD1835A will generate the timing signals. When the pins are set as inputs, the timing must be generated by the external audio controller.

DACs

The AD1835A has eight DAC channels arranged as four independent stereo pairs, with eight fully differential analog outputs for improved noise and distortion performance. Each channel has its own independently programmable attenuator, adjustable in 1024 linear steps. Digital inputs are supplied through four serial data input pins (one for each stereo pair) and a common frame (DLRCLK) and bit (DBLCK) clock. Alternatively, one of the packed data modes can be used to access all eight channels on a single TDM data pin. A stereo replicate feature is included where the DAC data sent to the first DAC pair is also sent to the other DACs in the part. The AD1835A can accept DAC data at a sample rate of 192 kHz on DAC 1 only. The stereo replicate feature can then be used to copy the audio data to the other DACs.
Each set of differential output pins sits at a dc level of $\mathrm{V}_{\text {REF }}$ and swings $\pm 1.4 \mathrm{~V}$ for a 0 dB digital input signal. A single op amp third-order external low-pass filter is recommended to remove
high frequency noise present on the output pins, as well as to provide differential-to-single-ended conversion. Note that the use of op amps with low slew rate or low bandwidth may cause high frequency noise and tones to fold down into the audio band; care should be exercised in selecting these components.
The FILTD pin should be connected to an external grounded capacitor. This pin is used to reduce the noise of the internal DAC bias circuitry, thereby reducing the DAC output noise. In some cases, this capacitor may be eliminated with little effect on performance.

DAC and ADC Coding

The DAC and ADC output data stream is in a twos complement encoded format. The word width can be selected from 16 bit, 20 bit, or 24 bit. The coding scheme is detailed in Table I.

Table I. Coding Scheme

Code	Level
$01111 \ldots \ldots .1111$	+FS
$00000 \ldots . .0000$	0 (Ref Level)
$10000 \ldots . .0000$	- FS

AD1835A CLOCKING SCHEME

By default, the AD1835A requires an MCLK signal that is 256 times the required sample frequency up to a maximum of 12.288 MHz . The AD1835A uses a clock scaler to double the clock frequency for use internally. The default setting of the clock scaler is Multiply by 2. The clock scaler can also be set Multiply by 1 (bypass) or by $2 / 3$. The clock scaler is controlled by programming the bits in the ADC Control 3 register. The internal MCLK signal, IMCLK, should not exceed 24.576 MHz in order to ensure correct operation.
The MCLK of the AD1835A should remain constant during normal operation of the DAC and ADC. If it is necessary to change the MCLK rate, then the AD1835A should be reset. Additionally, if the MCLK scaler needs to be modified so that the IMCLK doesn't exceed 24.576 MHz , this should be done during the internal reset phase of the AD1835A by programming the bits in the first 3072 MCLK periods following the reset.

Selecting DAC Sampling Rate

The AD1835A DAC engine has a programmable interpolator that allows the user to select different interpolation rates based on the required sample rate and MCLK value available. Table II shows the settings required for sample rates based on a fixed MCLK of 12.288 MHz .

Table II. DAC Sample Rate Settings

Sample Rate	Interpolator Rate	DAC Control 1 Register
48 kHz	8 x	000000xxxxxxxx00
96 kHz	4 x	000000xxxxxxx01
192 kHz	2 x	000000xxxxxxx10

Selecting an ADC Sample Rate

The AD1835A ADC engine has a programmable decimator, which allows the user to select the sample rate based on the MCLK value. By default, the output sample rate is IMCLK/ 512. To achieve a sample rate of IMCLK/256, the sample rate bit in the ADC Control 1 register should be set as shown in Table III.

Figure 2. Modulator Clocking Scheme

Figure 3. Format of SPI Timing

Table III. ADC Sample Rate Settings

Sample Rate	ADC Control 1 Register
IMCLK/512	$1100000 \times x \times x \times x \times x x(48 \mathrm{kHz})$
IMCLK/256	$1100000 \mathrm{xx} 1 \mathrm{xxxxxx}(96 \mathrm{kHz})$

To maintain the highest performance possible, the clock jitter of the master clock signal should be limited to less than 300 ps rms, measured using the edge-to-edge technique. Even at these levels, extra noise or tones may appear in the DAC outputs if the jitter spectrum contains large spectral peaks. It is highly recommended that the master clock be generated by an independent crystal oscillator. In addition, it is especially important that the clock signal not be passed through an FPGA or other large digital chip before being applied to the AD1835A. In most cases, this will induce clock jitter due to the fact that the clock signal is sharing common power and ground connections with unrelated digital output signals.

RESET and Power-Down

$\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ will power down the chip and set the control registers to their default settings. After $\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ is de-asserted, an initialization routine will run inside the AD1835A to clear all memories to zero. This initialization lasts approximately 20 LRCLK intervals. During this time, it is recommended that no SPI writes occur.

Power Supply and Voltage Reference

The AD1835A is designed for 5 V supplies. Separate power supply pins are provided for the analog and digital sections. These pins should be bypassed with 100 nF ceramic chip capacitors, as close to the pins as possible, to minimize noise pickup. A bulk aluminum electrolytic capacitor of at least $22 \mu \mathrm{~F}$ should also be provided on the same PC board as the codec. For critical applications, improved performance will be obtained with separate supplies for the analog and digital sections. If this is not possible, it is recommended that the analog and digital supplies be isolated by two ferrite beads in series with the bypass capacitor of each supply. It is important that the analog supply be as clean as possible.
The internal voltage reference is brought out on the FILTR pin and should be bypassed as close as possible to the chip, with a parallel combination of $10 \mu \mathrm{~F}$ and 100 nF . The reference voltage may be used to bias external op amps to the common-mode voltage of the analog input and output signal pins. The current drawn from the $\mathrm{V}_{\text {REF }}$ pin should be limited to less than $50 \mu \mathrm{~A}$.

Serial Control Port

The AD1835A has an SPI compatible control port to permit programming the internal control registers for the ADCs and DACs and for reading the ADC signal levels from the internal peak detectors. The SPI control port is a 4 -wire serial control port.

The format is similar to the Motorola SPI format except the input data-word is 16 bits wide. The maximum serial bit clock frequency is 12.5 MHz and may be completely asynchronous to the sample rate of the ADCs and DACs. Figure 3 shows the format of the SPI signal.

Serial Data Ports-Data Format

The ADC serial data output mode defaults to the popular I ${ }^{2}$ S format, where the data is delayed by 1 BCLK interval from the edge of the LRCLK. By changing Bits 6 to 8 in ADC Control Register 2, the serial mode can be changed to right-justified (RJ), left-justified DSP (DSP), or left-justified (LJ). In the RJ mode, it is necessary to set Bits 4 and 5 to define the width of the data-word.
The DAC serial data input mode defaults to I^{2} S. By changing Bits 5, 6, and 7 in DAC Control Register 1, the mode can be changed to RJ, DSP, LJ, Packed Mode 1, or Packed Mode 2. The word width defaults to 24 bits but can be changed by reprogramming Bits 3 and 4 in DAC Control Register 1.

Packed Modes

The AD1835A has a packed mode that allows a DSP or other controller to write to all DACs and read all ADCs using one input data pin and one output data pin. Packed Mode 256 refers to the number of BCLKs in each frame. The LRCLK is low while data from a left channel DAC or ADC is on the data pin and high while data from a right channel DAC or ADC is on the
data pin. DAC data is applied on the DSDATA1 pin and ADC data is available on the ASDATA pin. Figures 7 to 12 show the timing for the packed mode. Packed mode is available for 48 kHz and 96 kHz .

Auxiliary (TDM) Mode

A special auxiliary mode is provided to allow three external stereo ADCs to be interfaced to the AD1835A to provide 8-in/8-out operation. In addition, this mode supports glueless interface to a single SHARC DSP serial port, allowing a SHARC DSP to access all eight channels of analog I/O. In this special mode, many pins are redefined; see Table IV for a list of redefined pins.
The auxiliary and TDM interfaces are independently configurable to operate as masters or slaves. When the auxiliary interface is set as a master, by programming the auxiliary mode bit in ADC Control Register 2, the AUXLRCLK and AUXBCLK are generated by the AD1835A. When the auxiliary interface is set as a slave, the AUXLRCLK and AUXBCLK need to be generated by an external ADC as shown in Figure 15.
The TDM interface can be set to operate as a master or slave by connecting the \bar{M} / S pin to DGND or ODVDD, respectively. In master mode, the FSTDM and BCLK signals are outputs and are generated by the AD1835A. In slave mode, the FSTDM and BCLK are inputs and should be generated by the SHARC. Both 48 kHz and 96 kHz operations are available (based on a 12.288 MHz or 24.576 MHz MCLK) in this mode.

Figure 4. Stereo Serial Modes

Figure 5. ADC Serial Mode Timing

Figure 6. DAC Serial Mode Timing

Figure 7. ADC Packed Mode 128

Figure 8. ADC Packed Mode 256

Figure 9. DAC Packed Mode 128

Figure 10. DAC Packed Mode 256

Figure 11. ADC Packed Mode Timing

Figure 12. DAC Packed Mode Timing

Table IV. Pin Function Changes in Auxiliary Mode

Pin Name	I 2 S Mode	Auxiliary Mode
ASDATA (O)	I^{2} S Data Out, Internal ADC	TDM Data Out to SHARC.
DSDATA1 (I)	I^{2} S Data In, Internal DAC1	TDM Data In from SHARC.
DSDATA2 (I)/AAUXDATA1 (I)	I^{2} S Data In, Internal DAC2	AUX-I²S Data In 1 (from External ADC).
DSDATA3 (I)/AAUXDATA2 (I)	I^{2} S Data In, Internal DAC3	AUX-I²S Data In 2 (from External ADC).
DSDATA4 (I)/AAUXDATA3 (I)	I^{2} S Data In, Internal DAC4	AUX-I²S Data In 3 (from External ADC).
ALRCLK (O)	LRCLK for ADC	TDM Frame Sync Out to SHARC (FSTDM).
ABCLK (O)	BCLK for ADC	TDM BCLK Out to SHARC.
DLRCLK (I)/AUXLRCLK(I/O)	LRCLK In/Out Internal DACs	AUX LRCLK In/Out. Driven by external LRCLK from ADC in slave mode. In master mode, driven by MCLK/512.
DBCLK (I)/AUXBCLK(I/O)	BCLK In/Out Internal DACs	AUX BCLK In/Out. Driven by external BCLK from ADC in slave mode. In master mode, driven by MCLK/8.

Figure 13. Auxiliary Mode Timing

Figure 14. Auxiliary Mode Connection (Master Mode) to SHARC

Figure 15. Auxiliary Mode Connection (Slave Mode) to SHARC

AD1835A

CONTROL/STATUS REGISTERS

The AD1835A has 15 control registers, 13 of which are used to set the operating mode of the part. The other two registers, ADC Peak 0 and ADC Peak 1, are read-only and should not be programmed. Each of the registers is 10 bits wide with the exception of the ADC peak reading registers, which are six bits wide. Writing to a control register requires a 16 -bit data frame to be transmitted. Bits 15 to 12 are the address bits of the required register. Bit 11 is a read/write bit. Bit 10 is reserved and should always be programmed to 0 . Bits 9 to 0 contain the 10 -bit value that is to be written to the register or, in the case of a read operation, the 10 -bit register contents. Figure 3 shows the format of the SPI read and write operation.

DAC Control Registers

The AD1835A register map has 10 registers that are used to control the functionality of the DAC section of the part. The function of the bits in these registers is discussed in the following sections.

Sample Rate

These bits control the sample rate of the DACs. Based on a 24.576 MHz IMCLK, sample rates of $48 \mathrm{kHz}, 96 \mathrm{kHz}$, and 192 kHz are available. The MCLK scaling bits in ADC Control 3 should be programmed appropriately, based on the master clock frequency.

Power-Down/Reset

This bit controls the power-down status of the DAC section. By default, normal mode is selected, but by setting this bit, the digital section of the DAC stage can be put into a low power mode, thus reducing the digital current. The analog output section of the DAC stage is not powered down.

DAC Data-Word Width

These two bits set the word width of the DAC data. Compact disk (CD) compatibility may require 16 bits, but many modern digital audio formats require 24 -bit sample resolution.

DAC Data Format

The AD1835A serial data interface can be configured to be compatible with a choice of popular interface formats, including I^{2} S, LJ, RJ, or DSP modes. Details of these interface modes are given in the Serial Data Port section.

De-emphasis

The AD1835A provides built-in de-emphasis filtering for the three standard sample rates of $32.0 \mathrm{kHz}, 44.1 \mathrm{kHz}$, and 48 kHz .

Mute DAC

Each of the eight DACs in the AD1835A has its own independent mute control. Setting the appropriate bit will mute the DAC output. The AD1835A uses a clickless mute function that attenuates the output to approximately -100 dB over a number of cycles.

Stereo Replicate

Setting this bit copies the digital data sent to the stereo pair $\mathrm{DAC1}$ to the three other stereo DACs in the system. This allows all four stereo DACs to be driven by one digital data stream. Note that in this mode, DAC data sent to the other DACs is ignored.

DAC Volume Control

Each DAC in the AD1835A has its own independent volume control. The volume of each DAC can be adjusted in 1024 linear steps by programming the appropriate register. The default value for this register is 1023 , which provides no attenuation, i.e., full volume.

ADC Control Registers

The AD1835A register map has five registers that are used to control the functionality and read the status of the ADCs. The function of the bits in each of these registers is discussed in the following sections.

ADC Peak Level

These two registers store the peak ADC result from each channel when the ADC peak readback function is enabled. The peak result is stored as a 6 -bit number from 0 dB to -63 dB in 1 dB steps. The value contained in the register is reset once it has been read, allowing for continuous level adjustment as required. Note that the ADC peak level registers use the six most significant bits in the register to store the results.

Sample Rate

This bit controls the sample rate of the ADCs. Based on a 24.576 MHz IMCLK, sample rates of 48 kHz and 96 kHz are available. The MCLK scaling bits in ADC Control 3 should be programmed appropriately based on the master clock frequency.

ADC Power-Down

This bit controls the power-down status of the ADC section and operates in a manner similar to the DAC power-down.

High-Pass Filter

The ADC signal path has a digital high-pass filter. Enabling this filter will remove the effect of any dc offset in the analog input signal from the digital output codes.

ADC Data-Word Width

These two bits set the word width of the ADC data.

ADC Data Format

The AD1835A serial data interface can be configured to be compatible with a choice of popular interface formats, including $\mathrm{I}^{2} \mathrm{~S}, \mathrm{LJ}, \mathrm{RJ}$, or DSP modes.

Master/Slave Auxiliary Mode

When the AD1835A is operating in the auxiliary mode, the auxiliary ADC control pins, AUXBCLK and AUXLRCLK, which connect to the external ADCs, can be set to operate as a master or slave. If the pins are set in slave mode, one of the external ADCs should provide the LRCLK and BCLK signals.

ADC Peak Readback

Setting this bit enables ADCs peak reading. See the ADCs section for more information.

Table V. Control Register Map

Register Address	Register Name	Description	Type	Width	Reset Setting (Hex)
0000	DACCTRL1	DAC Control 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
0001	DACCTRL2	DAC Control 2	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
0010	DACVOL1	DAC Volume-Left 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
0011	DACVOL2	DAC Volume-Right 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
0100	DACVOL3	DAC Volume-Left 2	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
0101	DACVOL4	DAC Volume-Right 2	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
0110	DACVOL5	DAC Volume-Left 3	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
111	DACVOL6	DAC Volume-Right 3	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
100	DACVOL7	DAC Volume-Left 4	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
1001	DACVOL8	DAC Volume-Right 4	$\mathrm{R} / \overline{\mathrm{W}}$	10	3 FF
1010	ADCPeak0	ADC Left Peak	R	6	000
1011	ADCPeak1	ADC Right Peak	R	6	000
1100	ADCCTRL1	ADC Control 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
1101	ADCCTRL2	ADC Control 2	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
1110	ADCCTRL3	ADC Control 3	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
111	Reserved	Reserved	$\mathrm{R} / \overline{\mathrm{W}}$	10	Reserved

Table VI. DAC Control 1

Address	$\mathbf{R} / \overline{\mathbf{W}}$	RES	Function				
			De-emphasis	DAC Data Format	DAC DataWord Width	Power-Down Reset	Sample Rate
15, 14, 13, 12	11	10	9, 8	7, 6, 5	4, 3	2	1, 0
0000	0	0	$\begin{aligned} & 00=\text { None } \\ & 01=44.1 \mathrm{kHz} \\ & 10=32.0 \mathrm{kHz} \\ & 11=48.0 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 000=\mathrm{I}^{2} \mathrm{~S} \\ & 001=\mathrm{RJ} \\ & 010=\mathrm{DSP} \\ & 011=\mathrm{LJ} \\ & 100=\text { Packed } 256 \\ & 101=\text { Packed } 128 \\ & 110=\text { Reserved } \\ & 111=\text { Reserved } \end{aligned}$	$\begin{aligned} & 00=24 \text { Bits } \\ & 01=20 \text { Bits } \\ & 10=16 \text { Bits } \\ & 11=\text { Reserved } \end{aligned}$	$\begin{aligned} & 0=\text { Normal } \\ & 1=\text { Power-Down } \end{aligned}$	$\begin{aligned} & 00=8 \times(48 \mathrm{kHz}) \\ & 01=4 \times(96 \mathrm{kHz}) \\ & 10=2 \times(192 \mathrm{kHz}) \\ & 11=8 \times(48 \mathrm{kHz}) \end{aligned}$

Table VII. DAC Control 2

Address	$\mathbf{R} / \overline{\mathbf{W}}$	RES	Reserved	Function								
				Stereo Replicate	MUTE DAC							
					OUTR4	OUTL4	OUTR3	OUTL3	OUTR2	OUTL2	OUTR1	OUTL1
$\begin{aligned} & 15,14, \\ & 13.12 \end{aligned}$	11	10	9	8	7	6	5	4	3	2	1	0
0001	0	0	0	$\begin{aligned} & 0=\text { Off } \\ & 1=\text { Replicate } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$

Table VIII. DAC Volume Control

			Function
Address	$\mathbf{R} / \overline{\mathbf{W}}$	RES	DAC Volume
$\mathbf{1 5 , 1 4 , 1 3 , 1 2}$	11	10	$9,8,7,6,5,4,3,2,1,0$
$0010=$ DACL1	0	0	$0000000000=$ Mute
$0011=$ DACR1			$0000000001=1 / 1023$
$0100=$ DACL2			$0000000010=2 / 1023$
$0101=$ DACR2			$111111110=1022 / 1023$
$0110=$ DACL3			$111111111=1023 / 1023$
$0111=$ DACR3			
$1000=$ DACL4			
$1001=$ DACR4			

Table IX. ADC Peak

Address	$\mathbf{R} / \overline{\mathbf{W}}$	RES	Function	
			Six Data Bits	Four Fixed Bits
15, 14, 13, 12	11	10	9, 8, 7, 6, 5, 4	3, 2, 1, 0
$\begin{aligned} & 1010=\text { Left ADC } \\ & 1011=\text { Right ADC } \end{aligned}$	1	0	$\begin{aligned} & 000000=0.0 \mathrm{dBFS} \\ & 000001=-1.0 \mathrm{dBFS} \\ & 000010=-2.0 \mathrm{dBFS} \\ & 111111=-63.0 \mathrm{dBFS} \end{aligned}$	0000 These four bits are always zero.

Table X. ADC Control 1

			Function				
Address	$\mathbf{R} / \overline{\mathbf{W}}$	RES	RES	Filter	ADC Power-Down	Sample Rate	Reserved
15, 14, 13, 12	11	10	9	8	7	6	5, 4, 3, 2, 1, 0
1100	0	0	0	$\begin{aligned} & 0=\text { All Pass } \\ & 1=\text { High-Pass } \end{aligned}$	$\begin{aligned} & 0=\text { Normal } \\ & 1=\text { Power-Down } \end{aligned}$	$\begin{aligned} & 0=48 \mathrm{kHz} \\ & 1=96 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0,0,0,0,0,0 \\ & 0,0,0,0,0,0 \end{aligned}$

Table XI. ADC Control 2

Address	$\begin{aligned} & \mathrm{R} / \overline{\mathbf{W}} \\ & \text { RES } \end{aligned}$	RES	Function					
			Master/Slave Aux Mode	ADC Data Format	ADC DataWord Width	Reserved	ADC MUTE	
							Right	Left
15, 14, 13, 12	11	10	9	8, 7, 6	5, 4	3, 2	1	0
1101	0	0	$\begin{aligned} & 0=\text { Slave } \\ & 1=\text { Master } \end{aligned}$	$\begin{aligned} & 000=\mathrm{I}^{2} \mathrm{~S} \\ & 001=\mathrm{RJ} \\ & 010=\mathrm{DSP} \\ & 011=\mathrm{LJ} \\ & 100=\text { Packed } 256 \\ & 101=\text { Packed } 128 \\ & 110=\text { Auxiliary } 256 \\ & 111=\text { Auxiliary } 512 \end{aligned}$	$\begin{aligned} & 00=24 \text { Bits } \\ & 01=20 \text { Bits } \\ & 10=16 \text { Bits } \\ & 11=\text { Reserved } \end{aligned}$	0, 0	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$

Table XII. ADC Control 3

				Function			
Address	$\begin{aligned} & \mathbf{R} / \overline{\mathbf{W}} \\ & \mathrm{RES} \end{aligned}$	RES	Reserved	IMCLK Clocking Scaling	ADC Peak Readback	DAC Test Mode	ADC Test Mode
15, 14, 13, 12	11	10	9	8, 7, 6	5	4, 3, 2	1, 0
1110	0	0	0, 0	$\begin{aligned} & 00=\text { MCLK } \times 2 \\ & 01=\text { MCLK } \\ & 10=\text { MCLK } \times 2 / 3 \\ & 11=\text { MCLK } \times 2 \end{aligned}$	$\begin{aligned} & 0=\text { Disabled Peak Readback } \\ & 1=\text { Enabled Peak Readback } \end{aligned}$	$000=$ Normal Mode All others reserved	$00=$ Normal Mode All others reserved

CASCADE MODE

Dual AD1835A Cascade

The AD1835A can be cascaded to an additional AD1835A which, in addition to six external stereo ADCs, can be used to create a 32 -channel audio system with 16 inputs and 16 outputs. The cascade is designed to connect to a SHARC DSP and operates in a time division multiplexing (TDM) format. Figure 16 shows the connection diagram for cascade operation. The digital interface for both parts must be set to operate in Auxiliary 512 mode by programming ADC Control Register 2. AD1835A No. 1 is set as a master device by connecting the \bar{M} / S pin to DGND and AD1835A No. 2 is set as a slave device by connecting the $\overline{\mathrm{M}} / \mathrm{S}$ to ODVDD. Both devices should be run from the same MCLK and $\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ signals to ensure that they are synchronized.

With Device 1 set as a master it will generate the frame-sync and bit clock signals. These signals are sent to the SHARC and Device 2, ensuring that both know when to send and receive data. The cascade can be thought of as two 256 bit shift registers, one for each device. At the beginning of a sample interval, the shift registers contain the ADC results from the previous sample interval. The first shift register (Device 1) clocks data into the SHARC and clocks in data from the second shift register (Device 2). While this is happening, the SHARC is sending DAC data to the second shift register. By the end of the sample interval, all 512 bits of ADC data in the shift registers will have been clocked into the SHARC and replaced by DAC data, which is subsequently written to the DACs. Figure 17 shows the timing diagram for the cascade operation.

Figure 16. Dual AD1835A Cascade

Figure 17. Dual AD1835A Cascade Timing

AD1835A

Figure 18. Typical ADC Input Filter Circuit

Figure 19. Typical DAC Output Filter Circuit

OUTLINE DIMENSIONS

52-Lead Metric Quad Flat Package [MQFP]
 (S-52-1)
 Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-022-AC.

AD1835A
 Revision History

Location Page
12/03-Data Sheet changed from REV. 0 to REV. A.
Changes to ORDERING GUIDE 6
Deleted Clock Signals section 11
Added AD1835A CLOCKING SCHEME section 11
Added Table II and Table III and renumbered following tables 11
Updated Figure 3 12
Updated Auxiliary (TDM Mode) section 13
Updated Figure 5 14
Updated Figure 6 14
Added new Figures 7 and 8 and renumbered subsequent figures 15
Updated Figures 11 and 12 15
Edits to Table XI 20
Updated Table VIII 20
Updated Figure 19 22
Updated OUTLINE DIMENSIONS 23

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: *Guaranteed by design.

[^2]: Specifications subject to change without notice.

