

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier

Enhanced Product

FEATURES

Fast settling time: 500 ns to 0.1% Low offset voltage: 1.0 mV maximum at V_s = ±15 V Low offset voltage drift: 1.7 μ V/°C typical Low input bias current: 25 pA typical at V_s = ±15 V Dual-supply operation: ±5 V to ±15 V Low noise: 8.0 nV/ \sqrt{Hz} typical at f = 1 kHz Low distortion: 0.0005% No phase reversal Unity gain stable

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (-55°C to +125°C) Controlled manufacturing baseline 1 assembly/test site 1 fabrication site Product change notification Qualification data available on request

APPLICATIONS

Instrumentation Multipole filters Precision current measurement Photodiode amplifiers Military communication Avionics

GENERAL DESCRIPTION

The AD8512-EP is a dual-precision JFET amplifier that features low offset voltage, input bias current, input voltage noise, and input current noise.

The combination of low offsets, low noise, and very low input bias currents makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. The combination of dc precision, low noise, and fast settling time results in superior accuracy in flight instruments, electronic measurement, and aviation equipment. Unlike many competitive amplifiers, the AD8512-EP maintains its fast settling performance even with substantial capacitive loads. Unlike many older JFET amplifiers, the AD8512-EP does not suffer from output phase reversal when

AD8512-EP

PIN CONFIGURATION

input voltages exceed the maximum common-mode voltage range.

Fast slew rate and great stability with capacitive loads make the AD8512-EP suitable for high performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range of photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the AD8512-EP a great choice for military communication applications.

The AD8512-EP is available in an 8-lead narrow SOIC_N package. The AD8512-EP is specified over a military temperature range of -55° C to $+125^{\circ}$ C. Additional application and technical information can be found in the AD8512 data sheet.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
Pin Configuration	1
General Description	1
Revision History	2
Specifications	3
Electrical Characteristics	4

Absolute Maximum Ratings	5
Thermal Resistance	5
ESD Caution	5
Typical Performance Characteristics	6
Outline Dimensions	7
Ordering Guide	7

REVISION HISTORY

8/2018—Revision 0: Initial Version

SPECIFICATIONS

 V_{S} = ±5 V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.1	0.9	mV
		−55°C < T _A < +125°C			1.8	mV
Input Bias Current	IB			21	75	рА
		−55°C < T _A < +85°C			0.7	nA
		−55°C < T _A < +125°C			7.5	nA
Input Offset Current	los			5	50	рА
		−55°C < T _A < +85°C			0.3	nA
		−55°C < T _A < +125°C			0.5	nA
Input Capacitance						
Differential				12.5		pF
Common Mode				11.5		pF
Input Voltage Range			-2.0		+2.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -2.0 V \text{ to } +2.5 V$	86	100		dB
Large-Signal Voltage Gain	Avo	$R_L = 2 \ k\Omega, V_O = -3 \ V \ to + 3 \ V$	65	107		V/mV
Offset Voltage Drift (T _c V _{os})	$\Delta V_{os}/\Delta T$			1.7	12	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \ k\Omega$	4.1	4.3		V
		$R_L = 2 \ k\Omega$	3.9	4.2		V
		$R_L = 600 \Omega$	3.7	4.1		V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega, -55^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$		-4.9	-4.7	V
		$R_L = 2 k\Omega, -55^{\circ}C < T_A < +125^{\circ}C$		-4.9	-4.5	V
		$R_L = 600 \Omega$, $-55^{\circ}C < T_A < +125^{\circ}C$		-4.8	-4.2	V
Output Current	I _{OUT}		±40	±54		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 4.5 V \text{ to } \pm 18 V$	86	130		dB
Supply Current/Amplifier	Isy	$V_0 = 0 V$		2.0	2.3	mA
		−55°C < T _A < +125°C			2.5	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		20		V/µs
Gain Bandwidth Product	GBP			8		MHz
Settling Time	ts	To 0.1%, 0 V to 4 V step, G = +1		0.4		μs
Total Harmonic Distortion (THD) + Noise	THD + N	1 kHz, G = +1, R _L = 2 kΩ		0.0005		%
Phase Margin	фм			44.5		Degrees
NOISE PERFORMANCE						
Voltage Noise Density	en	f = 10 Hz		34		nV/√Hz
		f = 100 Hz		12		nV/√Hz
		f = 1 kHz		8.0	10	nV/√Hz
		f = 10 kHz		7.6		nV/√Hz
Peak-to-Peak Voltage Noise	e _n p-p	0.1 Hz to 10 Hz bandwidth		2.4	5.2	μV р-р

ELECTRICAL CHARACTERISTICS

 $V_{\text{S}}=\pm 15$ V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.1	1.0	mV
		−55°C < T _A < +125°C			1.8	mV
Input Bias Current	lв			25	80	рА
		−55°C < T _A < +85°C			0.7	nA
		−55°C < T _A < +125°C			10	nA
Input Offset Current	los			6	75	рА
		−55°C < T _A < +85°C			0.3	nA
		−55°C < T _A < +125°C			0.5	nA
Input Capacitance						
Differential				12.5		рF
Common Mode				11.5		pF
Input Voltage Range			-13.5		+13.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -12.5 V \text{ to } +12.5 V$	86	108		dB
Large-Signal Voltage Gain	Avo	$R_L = 2 k\Omega$, $V_{CM} = 0 V$,	115	196		V/mV
		$V_0 = -13.5 V \text{ to } +13.5 V$				
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1.7	12	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \ k\Omega$	14.0	14.2		V
		$R_L = 2 k\Omega$	13.8	14.1		V
		$R_L = 600 \Omega$	13.5	13.9		V
		$R_L = 600 \Omega$, $-55^{\circ}C < T_A < +125^{\circ}C$	11.4			V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega, -55^{\circ}C < T_A < +125^{\circ}C$		-14.9	-14.6	V
		$R_L = 2 k\Omega, -55^{\circ}C < T_A < +125^{\circ}C$		-14.8	-14.5	V
		$R_L = 600 \Omega$		-14.3	-13.8	V
		$R_L = 600 \Omega, -55^{\circ}C < T_A < +125^{\circ}C$			-12.1	V
Output Current	Іоит			±70		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 4.5 V \text{ to } \pm 18 V$	86			dB
Supply Current/Amplifier	Isy	$V_{\rm O} = 0 V$		2.2	2.5	mA
		−55°C < T _A < +125°C			2.6	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		20		V/µs
Gain Bandwidth Product	GBP			8		MHz
Settling Time	ts	To 0.1%, 0 V to 10 V step, G = +1		0.5		μs
		To 0.01%, 0 V to 10 V step, G = +1		0.9		μs
Total Harmonic Distortion (THD) + Noise	THD + N	1 kHz, G = +1, R _L = 2 kΩ		0.0005		%
Phase Margin	фм			52		Degrees
NOISE PERFORMANCE						
Voltage Noise Density	en	f = 10 Hz		34		nV/√Hz
-		f = 100 Hz		12		nV/√Hz
		f = 1 kHz		8.0	10	nV/√Hz
		f = 10 kHz		7.6		nV/√Hz
Peak-to-Peak Voltage Noise	e _n p-p	0.1 Hz to 10 Hz bandwidth		2.4	5.2	μV p-p

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	±18 V
Input Voltage	$\pm V_S$
Power Dissipation	See Figure 2
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	–55°C to +125°C
Junction Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C
Electrostatic Discharge (Human Body Model)	2000 V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{JA} \text{ is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. } \theta_{JC} \text{ is the junction to case thermal resistance.}$

Table 4. Thermal Resistance

Package Type ¹	Αιθ	ονθ	Unit
R-8	158	43	°C/W

¹ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD-51.

Figure 2. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8512-EP

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. T_CV_{os} Distribution

Figure 4. Input Bias Current vs. Temperature

Figure 6. Supply Current per Amplifier vs. Temperature

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Marking Code
AD8512TRZ-EP	-55°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	DNL
AD8512TRZ-EP-R7	–55°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	DNL

¹ Z = RoHS Compliant Part

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17170-0-8/18(0)

www.analog.com