FEATURES

```
Low offset voltage: 150 \muV max
Input offset drift: 1.5 \muV/}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ max
Low noise: 0.25 \muV p-p
High gain CMRR and PSRR: }115\mathrm{ dB min
Low supply current: 1.1 mA
Wide supply voltage range: }\pm4\textrm{V}\mathrm{ to }\pm18\textrm{V}\mathrm{ operation
```


APPLICATIONS

Medical and industrial instrumentation

Sensors and controls

Thermocouple
RTDs
Strain bridges
Shunt current measurements

Precision filters

GENERAL DESCRIPTION

The OP07D is a precision, ultralow offset amplifier. It integrates low power (1.1 mA typical), low input bias current ($\pm 1 \mathrm{nA}$ maximum), and high CMRR/PSRR (130 dB) in the small DIP package. Operation is fully specified from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supply.

The OP07D provides higher accuracy than industry-standard OP07-type amplifiers due to Analog Devices' iPolar ${ }^{\text {Tw }}$ process, which supports enhanced performance in a smaller footprint. These performance enhancements include wider output swing, lower power, and higher CMRR (common-mode rejection ratio) and PSRR (power supply rejection ratio). The OP07D maintains stability of offsets and gain virtually regardless of variations in time or temperature. Excellent linearity and gain accuracy can be maintained at high closed-loop gains.

The OP07D is fully specified over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The OP07D amplifier is available in 8 -lead DIP and the popular 8-lead, narrow SOIC lead-free packages.

PIN CONFIGURATIONS

Figure 1. 8-Lead SOIC_N (R-8), 8-Lead DIP ($N-8$)

TABLE OF CONTENTS

12/05—Revision 0: Initial Version
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Typical Performance Characteristics. 6
Outline Dimensions 13
Ordering Guide 14

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 1.

OPO7D

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}$ supply
Differential Input Voltage	$\pm 0.7 \mathrm{~V}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{J A}$ is specified for worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 4.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}$ JC	Unit
8-Lead DIP (N-8)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC (R-8)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Number of Amplifiers vs. Offset Voltage

Figure 3. Number of Amplifiers vs. Offset Voltage

Figure 4. Number of Amplifiers vs. TCVos

Figure 5. Number of Amplifiers vs. TCVos

Figure 6. Offset Voltage vs. Temperature

Figure 7. Offset Voltage vs. Temperature

Figure 8. Supply Current vs. Temperature

Figure 9. Positive Output Voltage Swing vs. Temperature

Figure 10. Positive Output Voltage Swing vs. Temperature

Figure 11. Negative Output Voltage Swing vs. Temperature

Figure 12. Negative Output Voltage Swing vs. Temperature

Figure 13. Input Bias Current vs. Temperature

OP07D

Figure 14. Input Bias Current vs. Temperature

Figure 15. CMRR vs. Temperature

Figure 16. Open-Loop Gain vs. Temperature

Figure 17. PSRR vs. Temperature

Figure 18. Short-Circuit Current vs. Temperature

Figure 19. Supply Current vs. Supply Voltage

Figure 20. Output Voltage Swing vs. Load Current

Figure 21. Output Voltage Swing vs. Load Current

Figure 22. Open-Loop Gain and Phase vs. Frequency

Figure 23. Closed-Loop Gain vs. Frequency

Figure 24. Closed-Loop Gain vs. Frequency

Figure 25. Overshoot vs. Capacitive Load

Figure 26. Overshoot vs. Capacitive Load

Figure 27. CMRR vs. Frequency

Figure 28. PSRR vs. Frequency

Figure 29. Output Impedance vs. Frequency

Figure 30. Output Impedance vs. Frequency

Figure 31. Voltage Noise Density vs. Frequency

Figure 32. Current Noise Density vs. Frequency

Figure 33. Small-Signal Transient

Figure 34. Large-Signal Transient

Figure 35. Large-Signal Transient

Figure 36. Positive Overload Recovery

Figure 37. Negative Overload Recovery

OPO7D

Figure 38. Positive Overload Recovery

Figure 39. Negative Overload Recovery

Figure 40. No Phase Reversal

Figure 41. Voltage Noise (0.1 Hz to 10 Hz)

Figure 42. Optional Offset Nulling Circuit

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-BA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 44. 8-Lead Plastic Dual In-Line Package [PDIP]
($\mathrm{N}-8$)
Dimensions shown in inches and (millimeters)

OPO7D

Model	Temperature Range	Package Description	Package Option
OP07DN	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead PDIP	N-8
OP07DNZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead PDIP	$\mathrm{N}-8$
OP07DR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
OP07DR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
OP07DR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
OP07DRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
OP07DRZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
OP07DRZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

NOTES

