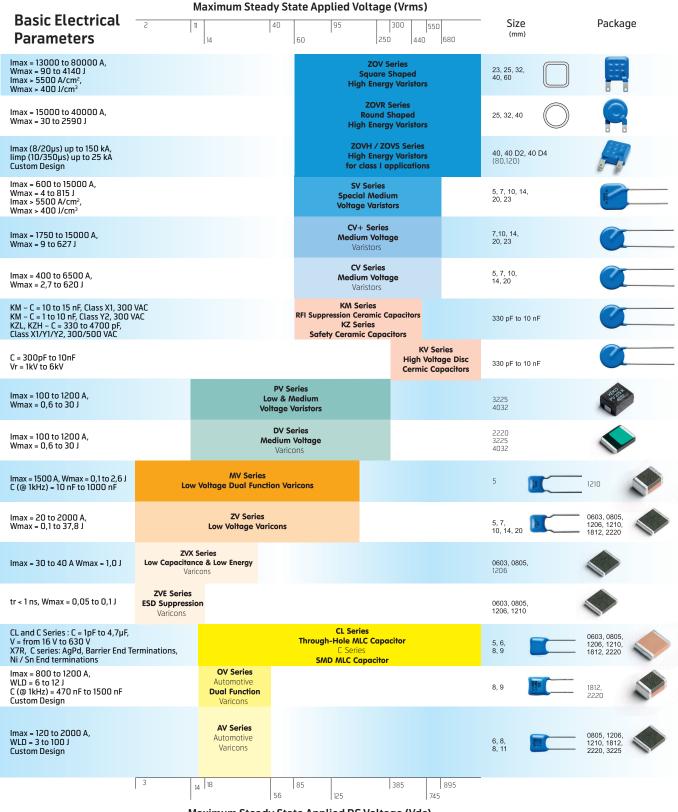
Catalogue - PROTECTIVE DEVICES - Edition 2015

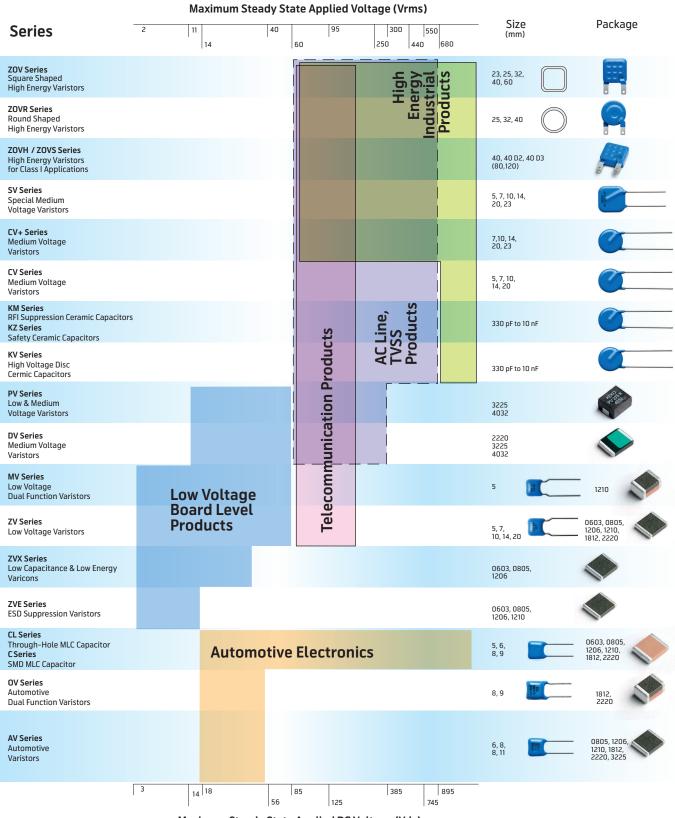
KEKOV/\RICON


Varistors SMD, THD, High Energy Varicons Multilayer SMD and THD Dual Function Varicons Capacitors Safety class X and Y disc capacitors High voltage disc capacitors

> OV 30 K 474 MX

122

www.keko-varicon.si


OVERVIEW OF PROTECTIVE DEVICES

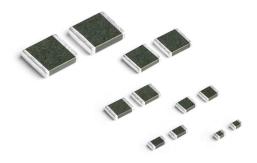
Maximum Steady State Applied DC Voltage (Vdc)

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

APPLICATION FIELDS

Maximum Steady State Applied DC Voltage (Vdc)

AV SMD Series


KEKOV/RICON 73

AUTOMOTIVE VARISTORS - AV SERIES

Description

Almost all-electronic systems in an automobile, e.g. anti-lock brake system, direct ignition system, airbag control system, wiper motors, etc. are susceptible to damage from destructive voltage transients. AV varistors are transient suppressors with temperature independent suppression characteristics enabling protection from -55 °C to 125 °C.

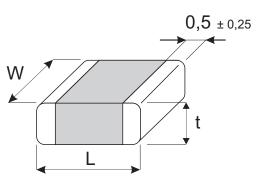
AV varistors offer excellent transient energy distribution. AV varistors require significantly less space and pad area than silicon TVS diodes, offering greater circuit board layout flexibility for the designer.

Features

- Supply voltage.....12 V, 24 V and 42 V
- Operating voltage range V_{dc}.....3 V to 170 V higher operating voltages available upon request.
- Load Dump Energy up to 50 J available upon request.
- + 125 °C maximum continuous operating temperature
- Automotive varistors with a lower or higher capacitance, as well as varistors with a 100 % controlled capacitance value, are available upon request.
- 6 model sizes available ...0805, 1206, 1812, 2220, 3225.
- Leadless chip form near zero inductance guaranteeing the fastest speed of response to transient surges.

- Broad range of current and energy handling capabilities.
- Low clamping voltage Uc.
- Absence of plastic coating guarantees better flammability rating.
- Non-sensitive to mildly activated fluxes (see Soldering Recommendations, page 25).
- End termination: AgPd or barrier type suitable for Pb-free soldering process – barrier type end terminations solderable with Pb-free solders according to JEDEC J-STD-020C and IEC 60068-2-58.
- RoHS 2 2011/65/EC, REACH, GADSL compliant.
- AEC-Q200 qualified Grade 1.

Absolute Maximum Ratings


Continuous:	Units	Value
Steady State Applied Voltage:		
DC Voltage Range (V _{dc})	V	16 to 56
Transient:		
Load Dump Energy (WDL)	J	1 to 25 *
Jump Start Capability (5 minutes), (V _{jump})	V	24,5 to 65
Peak Single Pulse Surge Current, 8/20 µs Waveform (I _{max})	А	120 to 2000
Single Pulse Surge Energy, 10/1000 µs Waveform (W _{max})	J	0,3 to 30
Operating Ambient Temperature	°C	-55 to +125
Storage Temperature Range	°C	-55 to +150
Threshold Voltage Temperature Coefficient	%/°C	< + 0,05
Response Time	ns	< 2
Climatic Category		55 / 125 / 56

* Types for Maximum Load Dump Energy (WLD) of 50 J are available upon request.

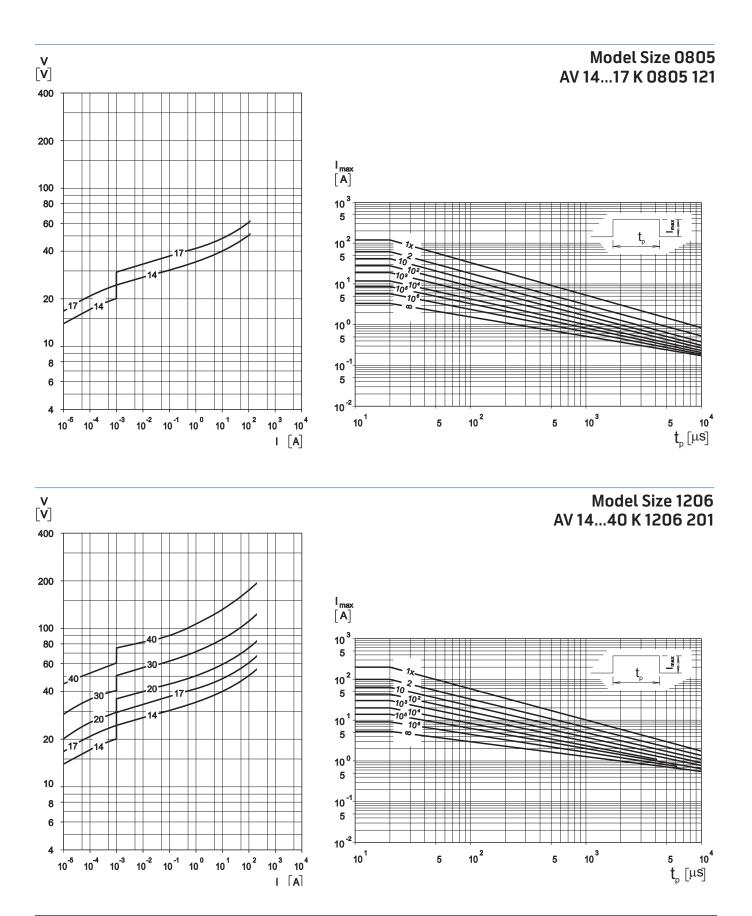
Device Ratings and Characteristics

Dimensions

	L mm	W mm	t _{max} mm
0805	$2,0 \pm 0,25$	1,25 ± 0,20	1,0
1206	3,2 ± 0,30	1,60 ± 0,20	1,2
1210	3,2 ± 0,30	2,50 ± 0,25	1,3
1812	$4,7 \pm 0,40$	3,20 ± 0,30	1,3
2220	$5,7 \pm 0,50$	$5,00 \pm 0,40$	1,4
3225	$8,0 \pm 0,50$	6,30 ± 0,40	1,5

AV 14 K 0805 121....AV 40 K 3225 202

Туре	V _{rms}	V_{dc}	V _n 1 mA	V_{jump} 5 min	V _c	Ι_c 8/20 μs	I_{max} 8/20 μs	W_{max} 10/1000 μs	WLD 10 x	P max	C _{typ} @1kHz
	V	V	V	V	V	А	А	J	J	W	nF
12 V Power Supply	_										
AV 14 K 0805 121	14	16	24	24,5	40	1	120	0,3	1	0,008	0,44
AV 14 K 1206 201	14	16	24	24,5	40	1	200	0,6	1,5	0,008	1,00
AV 14 K 1210 401	14	16	24	24,5	40	2,5	400	1,6	З,	0,010	2,23
AV 14 K 1812 801	14	16	24	24,5	40	5	800	2,4	6	0,015	4,50
AV 14 K 2220 122	14	16	24	24,5	40	10	1200	5,8	12	0,030	10,00
AV 14 K 3225 202	14	16	24	24,5	40	20	2000	12,5	25	0,040	16,00
AV 17 K 0805 121	17	20	27	30	44	1	120	0,5	1	0,008	0,37
AV 17 K 1206 201	17	20	27	30	44	1	200	1,1	1,5	0,008	0,81
AV 17 K 1210 401	17	20	27	30	44	2,5	400	1,8	3	0,010	2,00
AV 17 K 1812 801	17	20	27	30	44	5	800	2,9	6	0,015	3,80
AV 17 K 2220 122	17	20	27	30	44	10	1200	7,2	12	0,030	8,00
AV 17 K 3225 202	17	20	27	30	44	20	2000	13,8	25	0,040	13,20
24 V Power Supply											
AV 20 K 1206 201	20	26	22	30	54	1	200	1,6	1,5	0,008	0,78
AV 20 K 1210 401	20	26	22	30	54	2,5	400	1,9	3	0,010	1,65
AV 20 K 1812 801	20	26	22	30	54	5	800	3,0	6	0,015	3,30
AV 20 K 2220 122	20	26	22	30	54	10	1200	8,0	12	0,030	7,00
AV 20 K 3225 202	20	26	22	30	54	20	2000	15,0	25	0,040	11,00
AV 30 K 1206 201	30	34	47	50	77	1	200	2,0	1,5	0,008	0,53
AV 30 K 1210 401	30	34	47	50	77	2,5	400	2,3	3	0,010	1,10
AV 30 K 1812 801	30	34	47	50	77	5	800	3,8	6	0,015	2,20
AV 30 K 2220 122	30	34	47	50	77	10	1200	10,0	12	0,030	6,50
AV 30 K 3225 202	30	34	47	50	77	20	2000	17,0	25	0,040	6,60
42 V Power Supply											
AV 40 K 1206 201	40	56	68	65	110	1	200	2,2	1,5	0,008	0,40
AV 40 K 1210 401	40	56	68	65	110	2,5	400	2,6	3	0,010	0,90
AV 40 K 1812 801	40	56	68	65	110	5	800	4,8	6	0,015	1,80
AV 40 K 2220 122	40	56	68	65	110	10	1200	10,5	12	0,030	5,50
AV 40 K 3225 202	40	56	68	65	110	20	2000	21	25	0,040	6,20


AV SMD Series

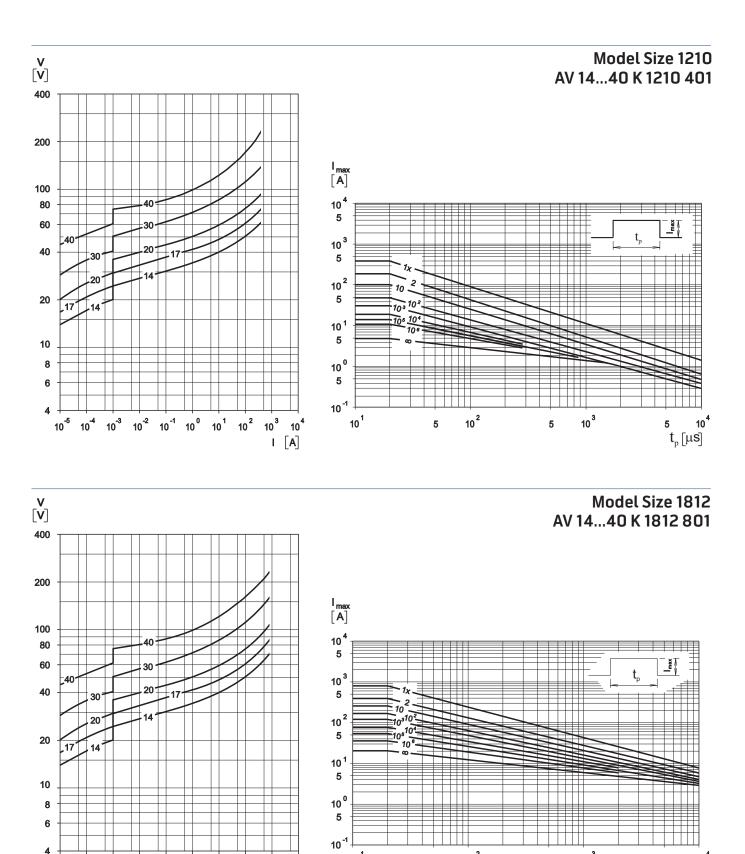
KEKOVARICON 75

Pulse Rating Curves

Protection Level

* In the most demanding conditions as per the tolerance region

KEKO VARICON products are sold by description only – product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.


76 **KEKO**VARICON

Protection Level

* In the most demanding conditions as per the tolerance region

Pulse Rating Curves

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

10¹

10²

5

10³

5

104

 t_{p} [µS]

5

Downloaded from Arrow.com.

 10^{-5} 10^{-4} 10^{-3}

10⁻²

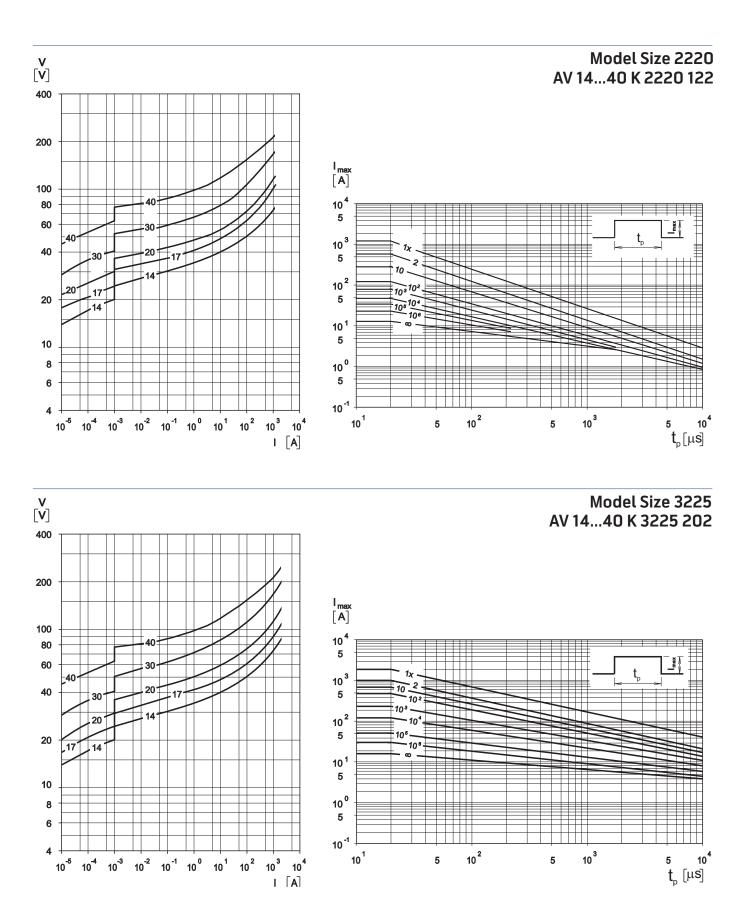
10⁰

10¹

10⁻¹

10²

10³


10⁴

I [A]

AV SMD Series

Protection Level

* In the most demanding conditions as per the tolerance region

KEKO VARICON products are sold by description only – product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Downloaded from Arrow.com.

KEKOVARICON 77

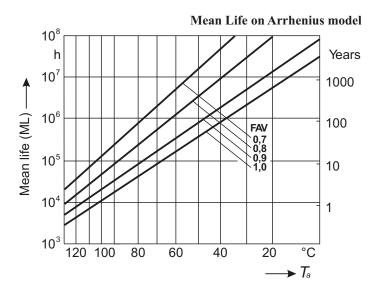
Pulse Rating Curves

78 **KEKO**VARICON

Reliability - Lifetime

In general, reliability is the ability of a component to perform and maintain its functions in routine circumstances, as well as hostile or unexpected circumstances.

The mean life of AV series components is a function of:


- Factor of Applied Voltage
- Ambient temperature.

Mean life is closely related to Failure rate (formula). vMean life (ML) is the arithmetic mean (average) time to failure of a component.

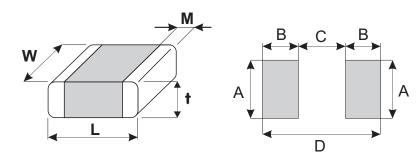
Failure rate is the frequency with which an engineered system or component fails, expressed for example in failures per hour. Failure rate is usually time dependent, an intuitive corollary is that the rate changes over time versus the expected life cycle of a system.

AV 14 ... 40

Dimension 0805 ... 3225

 $\Lambda = \frac{10^9}{\text{ML}[\text{h}]} \text{[fit]}$

FAV - Factor of Applied Voltage

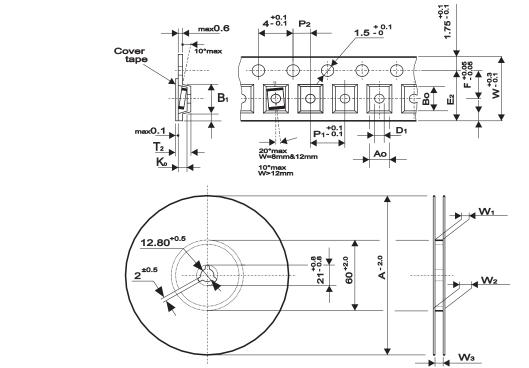

$$FAV = \frac{Vapl}{V_{max}}$$

Vapl ... applied voltage V_{max} ... maximum operating voltage

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

94 **KEKO**V/RICON

Soldering Pad Configuration



Size	L (mm)	W (mm)	M (mm)	t _{max} (mm)	A (mm)	B (mm)	C (mm)	D (mm)
0603	1,6 ± 0,20	0,80 ± 0,10	$0,5 \pm 0,25$	1,0	1,0	1,0	0,6	2,6
0805	2,0 ± 0,25	1,25 ± 0,20	$0,5 \pm 0,25$	1,1	1,4	1,2	1,0	3,4
1206	3,2 ± 0,30	1,60 ± 0,20	$0,5 \pm 0,25$	1,6	1,8	1,2	2,1	4,5
1210	3,2 ± 0,30	$2,50 \pm 0,25$	$0,5 \pm 0,25$	1,8	2,8	1,2	2,1	4,5
1812	4,7 ± 0,40	3,20 ± 0,30	$0,5 \pm 0,25$	1,9	3,6	1,5	3,2	6,2
2220	5,7 ± 0,50	$5,00 \pm 0,40$	$0,5 \pm 0,25$	1,9	5,5	1,5	4,2	7,2
3225	8,0 ± 0,50	6,30 ± 0,40	$0,5 \pm 0,25$	2,0	6,8	1,5	6,5	9,5

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Tape and Reel Specification

Conforms to IEC Publication 286 - 3 Ed.4: 2007-06

Reel

Tape

Variable dimensions

Таре	Size		8 n	nm		12 ו	nm	16	mm
Size	Units	0603	0805	1206	1210	1812	2220	3225	4032
Ao	(mm)	1,2	1,6	1,9	2,9	3,75	5,6	7	8,6
Во	(mm)	1,9	2,4	3,75	3,7	5	6,25	8,7	10,8
Ko max	(mm)	1,1	1,1	1,8	2	2	2	3,7	3,7
B1 max	(mm)	4,35	4,35	4,35	4,35	8,2	8,2	12,1	12,1
D1 min	(mm)	0,3	0,3	0,3	0,3	1,5	1,5	1,5	1,5
E2 min	(mm)	6,25	6,25	6,25	6,25	10,25	10,25	14,25	14,25
P1	(mm)	4	4	4	4	8	8	12	12
F	(mm)	3,5	3,5	3,5	3,5	5,5	5,5	7,5	7,5
W	(mm)	8,0	8,0	8,0	8,0	12,0	12,0	16,0	16,0
T2 max	(mm)	3,5	3,5	3,5	3,5	6,5	6,5	9,5	9,5
W1	(mm)	8,4+1,5	8,4+1,5	8,4+1,5	8,4+1,5	12,4+2	12,4+2	16,4+2	16,4+2
W2 max	(mm)	14,4	14,4	14,4	14,4	18,4	18,4	22,4	22,4
W3	(mm)	7,910,9	7,910,9	7,910,9	7,910,9	11,915,4	11,915,4	15,919,4	15,919,4
Α	(mm)	180/330	180/330	180/330	180/330	180/330	180/330	330	330

Package units

			Chip Size												
	Voltage	06	03	08	05	12	06	12	10	18	12	22	20	3225	4032
Series	range (V)	Reel	size	Reel	size	Reel	size	Reel	l size	Reel	size	Reel	size	Reel size	Reel size
		180	330	180	330	180	330	180	330	180	330	180	330	330	330
ZVE	14	4000	15000	4000	15000	4000	15000	4000	15000						
ZV /	2 to 14	4000	15000	4000	15000	4000	15000	4000	15000	1500	6000	1500	5000		
ZVX	17	3500	14000	3500	14000	2500	14000	2500	14000	1500	6000	1500	5000		
	20 to 40	3500	14000	3500	14000	2500	10000	2500	9000	1000	4000	1000	4000		
	50 to 130					2000	8000	2000	8000	1000	4000	1000	4000		
AV	14			3500	15000	2500	15000	2500	15000	1000	6000	1000	4000	2500	2500
	17			3500	14000	2500	14000	2500	14000	1000	6000	1000	4000	2500	2500
	20 to 40				14000	2500	10000	2500	9000	1000	4000	1000	4000	2500	2500

Ordering Information

AV 20 K 1210 401 N R1 yy AV 20 K 1210 401 Ni R1 yy

- AV Series Name: AV, ZV, ZVE, ZVX
- 20 Maximum Continuous Working Voltage V_{rms}
- **K** V_n Tolerance: K = $\pm 10\%$, L = $\pm 15\%$, M = $\pm 20\%$
- **1210** Chip Size: 0603, 0805, 1206, 1210, 1812, 2220, 3225
- **401** Maximum Surge Current: 400 = 40 A; 401 = 400 A
- N Barrier type end terminations suitable for Pb-fee reflow soldering - (no letter) AgPd end terminations suitable for Pb reflow soldering
- Ni Ni Sn barrier type end terminations suitable for Pb and Pb-Free reflow soldering
- **R1** Packaging: R1 = Reel 180 mm, R2 = Reel 330 mm, R3 = 180 mm-1000 pcs
- yy Special requirements

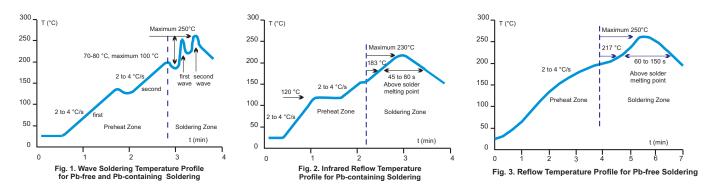
KEKO VARICON products are sold by description only – product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

SOLDERING RECOMMENDATIONS

Popular soldering techniques used for surface mounted components are Wave and Infrared Reflow processes. Both processes can be performed with Pb-containing or Pb-free solders. The termination options available for these soldering techniques are AgPd and Barrier Type End Terminations.

End termination	Designation	Recommended and Suitable for	Component RoHS Compliant
Ag/Pd	Series (ZV, AV, DV, C,) R1	Pb-containing soldering	Yes
Barrier Type End Termination	Series (ZV, AV, DV, C,) N R1	Pb-containing and Pb-free soldering	Yes
Ni Sn End Termination	Series (ZV, AV,)Ni R1	Pb-containing and Pb-free soldering v	Yes

Wave Soldering – this process is generally associated with discrete components mounted on the underside of printed circuit boards, or for large top-side components with bottom-side mounting tabs to be attached, such as the frames of transformers, relays, connectors, etc. SMD varistors to be wave soldered are first glued to the circuit board, usually with an epoxy adhesive. When all components on the PCB have been positioned and an appropriate time is allowed for adhesive curing, the completed assembly is then placed on a conveyor and run through a single, double wave process.


Infrared Reflow Soldering – these reflow processes are typically associated with top-side component placement. This technique utilizes a mixture of adhesive and solder compounds (and sometimes fluxes) that are blended into a paste. The paste is then screened onto PCB soldering pads specifically designed to accept a particular sized SMD component. The recommended solder paste wet layer thickness is 100 to 300 µm. Once the circuit board is fully populated with MD components, it is placed in a reflow environment, where the paste is heated to slightly above its eutectic temperature. When the solder paste reflows, the SMD components are attached to the solder pads.

Solder Fluxes – solder fluxes are generally applied to populated circuit boards to lean oxides form forming during the heating process and to facilitate the flowing of the solder. Solder fluxes can be either a part of the solder paste compound or can be separate materials, usually fluids. Recommended fluxes are:

- non-activated (R) fluxes, whenever possible
- mildly activated (RMA) fluxes of class L3CN
- class ORLO

Activated (RA), water soluble or strong acidic fluxes with a chlorine content > 0.2 wt. % are NOT RECOMMENDED. The use of such fluxes could create high leakage current paths along the body of the varistor components.

When a flux is applied prior to wave soldering, it is important to completely dry any residual flux solvents prior to the soldering process.

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

SMD Components

Thermal Shock – to avoid the possibility of generating stresses in the varistor chip due to thermal shock, a preheat stage to within 100 °C of the peak soldering process temperature is recommended. Additionally, SMD varistors should not be subjected to a temperature gradient greater than 4 °C/sec., with an ideal gradient being 2 °C/sec. Peak temperatures should be controlled. Wave and Reflow soldering conditions for SMD varistors with Pb-containing solders are shown in Fig. 1 and 2 respectively, while Wave and Reflow soldering conditions for SMD varistors with Pb-free solders are shown in Fig. 1 and 3.

Whenever several different types of SMD components are being soldered, each having a specific soldering profile, the soldering profile with the least heat and the minimum amount of heating time is recommended. Once soldering has been completed, it is necessary to minimize the possibility of thermal shock by allowing the hot PCB to cool to less than 50 °C before cleaning.

Inspection Criteria – the inspection criteria to determine acceptable solder joints, when Wave or Infrared Reflow processes are used, will depend on several key variables, principally termination material process profiles.

Pb-contining Wave and IR Reflow Soldering – typical "before" and "after" soldering results for Silver/Palladium (AgPd) and Barrier Type End Terminations can be seen in Fig. 4. Both barrier type and silver/palladium terminated varistors form a reliable electrical contact and metallurgical bond between the end terminations and the solder pads. The bond between these two metallic surfaces is exceptionally strong and has been tested by both vertical pull and lateral (horizontal) push tests. The results, in both cases, exceed established industry standards for adhesion.

The solder joint appearance of a barrier type terminated versus a sliver/palladium terminated varistor will be slightly different. Solder fo_{rms} a metallurgical junction with the thin tin-alloy (over the barrier layer), and due to its small volume "climbs" the outer surface of the terminations, the meniscus will be slightly lower. This optical appearance difference should be taken into consideration when programming visual inspection of the PCB after soldering.

Silver Palladium (AgPd) End Terminations

Barrier Type End Terminations and Ni Sn End Terminations

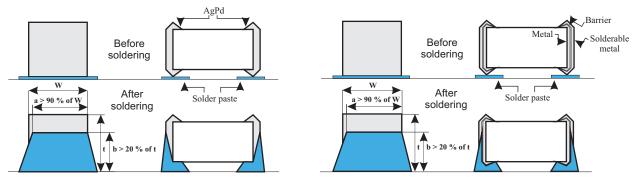


Fig. 4 Soldering Criterion in case of Wave and IR Reflow Pb-containing Soldering

Silver Palladium (AgPd) End Terminations

Barrier Type End Terminations and Ni Sn End Terminationsv

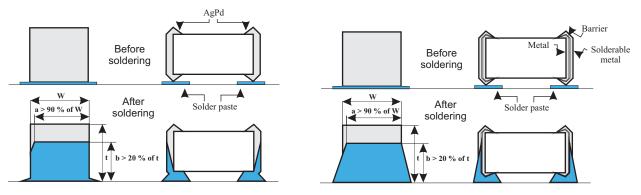


Fig. 5 Soldering Criterion in case of Wave and IR Reflow Pb-free Soldering

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

112 KEKOVARICON

SMD Components

Pb-free Wave and IR Reflow Soldering – typical "before" and "after" soldering results for Silver/Palladium (AgPd) and Barrier Type End Terminations are given in A phenomenon knows as "mirror" or "negative" meniscus results will appear in the case of Silver/Palladium terminated varistors. Solder fo_{rms} a metallurgical junction with the entire volume of the end termination, i.e. it diffuses from pad to end termination across the inner side, forming a "mirror" or "negative meniscus. The height of the solder penetration can be clearly seen on the end termination and is always 30% higher than the chip height.

Since barrier type terminations on KEKO-VARICON chips do not require the use of problematic nickel and tin-alloy electroplating processes, these varistors are truly considered environmentally friendly.

Solder Test and Retained Samples – reflow soldering test based on J-STD-020D.1 and soldering test by dipping based on IEC 60068-2 for Pb-free solders are preformed on each production lot as shown in the following chart. Test results and accompanying samples are retained for a minimum of two (2) years. The solderability of a specific lot can be checked at any time within this period should a customer require this information.

Test	Resistance to flux	Solderability	Static leaching (simula- tion of Reflow Solder- ing)	Dynamic leaching (simunation of Wave Soldering)
Parameter				
Soldering method	dipping	dipping	dipping	dipping with agitation
Flux	L3CN, ORLO	L3CN, ORLO, R	L3CN, ORLO, R	L3CN, ORLO, R
Pb Solder	62Sn / 36Pb / 2 Ag			
Pb Soldering tempera- ture (°C)	235 ± 5	235 ± 5	260 ± 5	235 ± 5
Pb-FREE Solder	Sn96 / Cu0,4-0,8 / 3-4Ag			
Pb-FREE Soldering temperature (°C)	250 ± 5	250 ± 5	280 ± 5	250 ± 5
Soldering time (s)	2	210	10	> 15
Burn-in conditions	V _{dcmax} , 48 h	-	-	-
Acceptance criterion	dVn < 5 %, i _{dc} must stay unchanged	> 95 % of end termina- tion must be covered by solder	> 95 % of end termina- tion must be intact and covered by solder	> 95 % of end termina- tion must be intact and covered by solder

Rework Criteria Soldering Iron – unless absolutely necessary, the use of soldering irons is NOT recommended for reworking varstor chips. If no other means of rework is available, the following criteria must be strictly followed:

- Do not allow the tip of the iron to directly contact the top of the chip
- Do not exceed the following soldering iron specifications: Outp ut Power: 30 Watts maximum Temperature of Soldering Iron Tip: 280 °C maximum Soldering Time: 10 Seconds maximum

Storage Conditions – SMD varistors should be used within 1 year of purchase to avoid possible soldering problems caused by oxidized terminals. The storage environment should be controlled, with humidity less than 40% and temperature between -25 and 45 °C. Varistor chips should always be stored in their original packaged unit.

Where varistor chips have been in storage for more than 1 year, and where there is evidence of solderability difficulties, KEKO-VAR-ICON can "refresh" the terminations to eliminate these problems.

KEKO VARICON products are sold by description only – product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Reliability Testing Procedures

Varistor testing procedures comply with CECC 42200, IEC 1051-1/2 and AEC-Q200. Testing results are avialable upon customer request. Special tests can be performed upon customer request.

Reliability Parameter	Test	Tested according to	Condition to be satisfied after testing	
AC/DC Bias Reliability	AC/DC Life Test	CECC 42200, Test 4.20 or IEC 1051-1, Test 4.20., AEC-Q200 Test8 - 1000 h at UCT	δ _{vn} (1 mA) < 10 %	
Pulse Current Capability	I _{max} 8/20 μs	CECC 42200, Test C 2.1 or IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current for 10 pulses	δ _{vn} (1 mA) < 10 % no visible damagev	
Pulse Energy Capability	W _{max} 10/1000 µs	CECC 42200, Test C 2.1 or IEC 1051-1, Test 4.5. 10 pulses in the same direction at 1 pulses every 2 minutes at maximum peak current for 10 pulses	δ _{vn} (1 mA) < 10 % no visible damage	
WLD Capability	WLD x 10	ISO 7637, Test pulse 5, 10 pulses at rate 1 per minute	δ _{vn} (1 mA) < 15 % no visible damage	
V _{jump} Capability	V _{jump} 5 min	Increase of supply voltage to V \ge V _{jump} for 1 minute	δ _{Vn} (1 mA) < 15 % no visible damage	
Environmental		 CECC 42200, Test 4.16 or IEC 1051-1, Test 4.17. a) Dry heat, 16h, UCT, Test Ba, IEC 68-2-2 b) Damp heat, cyclic, the first cycle: 55 °C, 93 % RH, 24 h, Test Db 68-2-4 c) Cold, LCT, 2 h, Test Aa, IEC 68-2-1 d) Damp heat cyclic, remaining 5 cycles: 55 °C, 93 % RH, 24 h/cycle, Test Bd, IEC 68-2-30 	δ _{vn} (1 mA) < 10 %	
and Storage Reliability	Thermal Shock	CECC 42200, Test 4.12, Test Na, IEC 68-2-14, AEC-Q200 Test16, 5 cycles UCT/LCT, 30 minutes	δ _{vn} (1 mA) < 10 % no visible damage	
	Steady State Damp Heat	CECC 42200, Test 4.17, Test Ca, IEC 68-2-3, AEC-Q200 Test 6, 56 days, 40 °C, 93% RH. AEC-Q200 Test7: Bias, Rh, T all at 85.	δ _{Vn} (1 mA) < 10 %	
	Storage Test	IEC 68-2-2, Test Ba, AEC-Q200 Test 3, 1000 h at maximum storage temperature	δ _{Vn} (1 mA) < 5 %	
	Solderability	CECC 42200, Test 4.10.1, Test Ta, IEC 68-2-20 solder bath and reflow method	Solderable at shipment and after 2 year of storage, criteria > 95% must be covered by solder for reflow meniscus	
	Resistance to Soldering Heat	CECC 42200, Test 4.10.2, Test Tb, IEC 68-2-20 solder bath nad reflow method	δ _{Vn} (1 mA) < 5 %	
	Terminal Strength	JIS-C-6429, App. 1, 18N for 60 s - same for AEC-Q200 Test 22	no visual damage	
Mechanical Reliability	Board Flex	JIS-C-6429, App. 2, 2 mm min. AEC-Q200 test 21 – Board flex: 2 mm flex min.	δ _{Vn} (1 mA) < 2 % no visible damage	
Reliability	Vibration	CECC 42200, Test 4.15, Test Fc, IEC 68-2-6, AEC-Q200 Test 14. Frequency range 10 to 55 Hz (AEC: 10-2000Hz) Amplitude 0.75 m/s2 or 98 m/s2 (AEC: 5 g's for 20 minutes) Total duration 6 h (3x2h) (AEC: 12 cycles each of 3 directions) Waveshape - half sine	δ _{vn} (1 mA) < 10 % no visible damage	
	Mechanical Shock	CECC 42200, Test 4.14, Test Ea, IEC 68-2-27, AEC-Q200 Test 13. Acceleration = 490 m/s2 (AEC: MIL-STD-202-Method 213), Pulse duration = 11 ms, Waveshape - half sine; Number of shocks = 3x6	δ _{vn} (1 mA) < 10 % no visible damage	
Electrical Transient Conduction	ISO-7637-1 Pulses	AEC-Q200 Teat 30: Test pulses 1 to 3. Also other pulses - freestyle.	δ _{Vn} (1 mA) < 10 % no visible damage	

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Terminology

Term	Symbol	Definition
Rated AC Voltage	V _{rms}	Maximum continuous sinusoidal AC voltage (<5% total harmonic distortion) which may be applied to the component under continuous operation conditions at 25 °C
Rated DC Voltage	V _{dc}	Maximum continuous DC voltage (<5% ripple) which may be applied to the component under continuous operating conditions at 25 °C
Supply Voltage	V	The voltage by which the system is designated and to which certain operating characteristics of the system are referred; $V_{rms} = 1.1 \times V$
Leakage Current	l _{dc}	The current passing through the varistor at $\rm V_{dc}$ and at 25 °C or at any other specified temperature
Varistor Voltage	V _n	Voltage across the varistor measured at a given reference current In
Reference Current	l _n	Reference current = 1 mA DC
Clamping Voltage Protection Level	V _c	The peak voltage developed across the varistor under standard atmospheric conditions, when passing an 8/20 μs class current pulse
Class Current	I _c	A peak value of current which is 1/10 of the maximum peak current for 100 pulses at two per minute for the 8/20 μs pulse
Voltage Clamping Ratio	V _c /V _{app}	A figure of merit measure of the varistor clamping effectiveness as defined by the symbols V_c/V_{app} , where ($V_{app} = V_{rms}$ or V_{dc})
Jump Start Transient	V _{jump}	The jump start transient results from the temporary application of an overvoltage in excess of the rated battery voltage. The circuit power supply may be subjected to a temporary overvoltage condition due to the voltage regulation failing or it may be deliberately generated when it becomes necessary to boost start the car.
Rated Single Pulse Transient Energy	W _{max}	Energy which may be dissipated for a single 10/1000 µs pulse of a miaximum rated current, with rated AC voltage or rated DC voltage also applied, without causing device failure
Load Dump Transient	WLD	Load Dump is a transient which occurs in automotive environment. It is an exponentially decaying positive voltage which occurs in the event of a battery disconect while the alternator is still generating charging current with other loads remaining on the alternator circuit at the time of battery disconect.
Rated Peak Single Pulse Transient Current	I _{max}	Maximum peak current which may be applied for a single 8/20 µs pulse, with, rated line voltage also applies, without causing device failure
Rated Transient Average Power Dissipation	Р	Maximum average power which may be dissipated due to a group of pulses occurring within a specified isolated time period, without causing device failure at 25 °C
Capacitance	С	Capacitance between two terminals of the varistor measured at @ 1 kHz
Non-linearity Exponent	α	A measure of varistor nonlinearity between two given operating currents, I_n and I_1 , as described by $I = k V exp(a)$, where: - k is a device constant, - $I_1 < I < i_n$ and - a 0 log $(I_1/I_n)/log(V_1/V_n) = 1/log(V1/V_n)$, where: - I_n is reference current (1 mA) and V_n is varistor voltage - $I_1 = 10 In$, V_1 is the voltage measured at I_1
Response Time	tr	The time lag between application of a surge and varistor's "turn-on" conduction action
Varistor Voltage Temperature Coefficient	TC	(V _n at 85 °C - V _n at 25 °C) / (V _n at 25 °C) x 60 °C) x 100
Insulation Resistance	IR	Minimum resistance between shorted terminals and varistor surface
Isolation Voltage		The maximum peak voltage which may be applied under continuous operating conditions between the varistro terminations and any conducting mounting surface
Operating Temperature		the range of ambient temperature for which the varistor is designed to operate continuously as defined by the temperature limits of its climatic category
Climatic Category	LCT/UCT/ DHD	UCT = Upper Category Temperature - the maximum ambient temperature for which a varistor has been designed to operate continuously, LCT = Lower Category Temperature - the minimum ambient temperature at which a varistor has been designed to operate continuously DHD = Dump Heat Test Duration
Storage Temperature		Storage temperature range without voltage applied
Current/Energy Derating		Derating of maximum values when operated above UCT (85 °C for PV and 125 °C for DV)

KEKO VARICON products are sold by description only - product technical specification. KEKO VARICON reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by KEKO VARICON is believed to be accurate and reliable. However, no responsibility is assumed by KEKO VARICON for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Grajski trg 15, SI-8360 Zuzemberk, SLOVENIA Phone: + 386 7 3885 178 Fax: + 386 7 3885 166 E-mail: info@keko-varicon.si All rights reserved/Copyright © 2015 KEKO VARICON d.o.o.

www.keko-varicon.si