Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of $>40 \%$ vs. 4×0402 discrete capacitors and of $>70 \%$ vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.
A reduction of 40 placements increases throughput by 18%.

For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2 -element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20 Hr operational day a machine places 720 K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.
Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

The 0508 4-element capacitor array gives a PCB space saving of over 40\% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 05084 -element capacitor array styles are qualified to the AEC-Q200 automotive specifications.
AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.
All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

*Contact factory for availability by part number for $\mathrm{K}= \pm 10 \%$ and $\mathrm{J}= \pm 5 \%$ tolerance.

NPO/COG								
SIZE	W2 = 0508				W3 = 0612			
No. of Elements	4				4			
WVDC	16	25	50	100	16	25	50	100
1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5								
1R8 1.8 2R2 2.2 2R7 2.7								
3R3 3.3 3R9 3.9 4R7 4.7								
5R6 5.6 6R8 6.8 8R2 8.2								
100 10 120 12 150 15								
180 18 220 22 270 27								
330 33 390 39 470 47								
560 56 680 68 820 82								
101 100 121 120 151 150								
181 180 221 220 271 270								
331 330 391 390 471 470								
561 560 681 680 821 820								
102 1000 122 1200 152 1500								
182 1800 222 2200 272 2700								
332 3300 392 3900 472 4700								
562 5600 682 6800 822 8200								

$=$ NPO/COG

	X7R												
SIZE	W2 = 0508				W2 = 0508				W3 = 0612				
No. of Elements	2				4				4				
WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
Cap 100 121 (pF) 120 151 150													
181 180 221 220 271 270													
331 330 391 390 471 470													
561 560 681 680 821 820													
102 1000 122 1200 152 1500													
182 1800 222 2200 272 2700													
332 3300 392 3900 472 4700													
562 5600 682 6800 822 8200													
103 Cap 0.010 123 ($\mu \mathrm{F}) 0.012$ 153 0.015													
183 0.018 223 0.022 273 0.027 0.033													
333 0.033 393 0.039 473 0.047													
563 0.056 683 0.068 823 0.082													
104 0.10 124 0.12 154 0.15													
$224 \quad 0.22$													

Not RoHS Compliant

PART \& PAD LAYOUT DIMENSIONS
millimeters (inches)

PART DIMENSIONS
0508-2 Element

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}	\mathbf{S}
1.30 ± 0.15 (0.051 ± 0.006)	2.10 ± 0.15 (0.083 ± 0.006)	0.94 MAX $(0.037 \mathrm{MAX})$	0.43 ± 0.10 $(0.017 \pm$ 0.004$)$	$(0.33 \pm 0.013 \pm 0.003)$	1.00 REF	
$(0.039$	REF $)$	0.50 ± 0.10 (0.020 ± 0.004)				

0508-4 Element

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}	\mathbf{X}	\mathbf{S}
$(0.30 \pm 0.15$	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	$(0.25 \pm 0.10$
(0.051 ± 0.006)	(0.083 ± 0.006)						
$(0.037 \mathrm{MAX})$	(0.010 ± 0.003)	(0.008 ± 0.003)	$(0.020$	REF $)$	(0.030 ± 0.004)	(0.010 ± 0.004)	

0612-4 Element

\mathbf{L}	\mathbf{W}	\mathbf{T}	$\mathbf{B W}$	$\mathbf{B L}$	\mathbf{P}	\mathbf{X}	\mathbf{S}
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10	$0.18{ }^{+0.025}$	0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	$(0.053 \mathrm{MAX})$	(0.016 ± 0.004)	$\left(0.007{ }_{-0.010}^{+0.010)}\right.$	$(0.030 \mathrm{REF})$	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS 0508-2 Element

A	B	C	D	E
0.68	1.32	2.00		
(0.027)	(0.052)	0.46		
(0.079)	(0.018)	1.00		
(0.039)				

0508-4 Element

A	B	C	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612-4 Element

A	B	C	\mathbf{D}	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

