FEATURES

Enhanced Replacement for LF441 and TL061
DC Performance:
$200 \mu \mathrm{~A}$ max Quiescent Current
10 pA max Bias Current, Warmed Up (AD548C)
$250 \mu \mathrm{~V}$ max Offset Voltage (AD548C)
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max Drift (AD548C)
$2 \mu \mathrm{~V}$ p-p Noise, 0.1 Hz to 10 Hz
AC Performance:
$1.8 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
1 MHz Unity Gain Bandwidth
Available in Plastic, Hermetic Cerdip and Hermetic Metal Can Packages and in Chip Form
Available in Tape and Reel in Accordance with EIA-481A Standard
MIL-STD-883B Parts Available
Dual Version Available: AD648
Surface Mount (SOIC) Package Available

PRODUCT DESCRIPTION

The AD548 is a low power, precision monolithic operational amplifier. It offers both low bias current (10 pA max, warmed up) and low quiescent current ($200 \mu \mathrm{~A}$ max) and is fabricated with ion-implanted FET and laser wafer trimming technologies. Input bias current is guaranteed over the AD 548's entire common-mode voltage range.
The economical J grade has a maximum guaranteed input offset voltage of less than 2 mV and an input offset voltage drift of less than $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The C grade reduces input offset voltage to less than 0.25 mV and offset voltage drift to less than $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. This level of dc precision is achieved utilizing Analog's laser wafer drift trimming process. The combination of low quiescent current and low offset voltage drift minimizes changes in input offset voltage due to self-heating effects. Four additional grades are offered over the commercial, industrial and military temperature ranges.
The AD548 is recommended for any dual supply op amp application requiring low power and excellent dc and ac performance. In applications such as battery-powered, precision instrument front ends and CM OS DAC buffers, the AD 548's excellent combination of low input offset voltage and drift, low bias current and low 1/f noise reduces output errors. High com-mon-mode rejection (86 dB , min on the " C " grade) and high open-loop gain ensures better than 12-bit linearity in high impedance, buffer applications.
The AD 548 is pinned out in a standard op amp configuration and is available in six performance grades. The AD 548J and AD 548K are rated over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD 548A, AD 548B and AD 548C are rated

NOTE : PIN 4 CONNECTED TO CASE NC = NO CONNECT
over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The AD 548 S is rated over the military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is available processed to M IL-ST D-883B, Rev. C .
The AD 548 is available in an 8-pin plastic mini-DIP, cerdip, T 0-99 metal can, surface mount (SOIC), or in chip form.

PRODUCT HIGHLIGHTS

1. A combination of low supply current, excellent dc and ac performance and low drift makes the AD 548 the ideal op amp for high performance, low power applications.
2. The AD 548 is pin compatible with industry standard op amps such as the LF 441, T L 061, and AD 542, enabling designers to improve performance while achieving a reduction in power dissipation of up to 85%.
3. Guaranteed low input offset voltage (2 mV max) and drift ($20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max) for the AD 548) are achieved utilizing Analog Devices' laser drift trimming technology, eliminating the need for external trimming.
4. A nalog D evices specifies each device in the warmed-up condition, insuring that the device will meet its published specifications in actual use.
5. A dual version, the AD 648 is also available.
6. Enhanced replacement for LF441 and TL061.

REV. B

One Technology Way, P.O. Box 9106, Nonwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD548- SPECIF|CATIONS (@ $+25^{\circ} \mathrm{C}$ and $\mathrm{v}_{\mathrm{s}}= \pm 15 \mathrm{~V}$ dc unless otherwise noted)

NOTES

${ }^{1}$ Input Offset V oltage specifications are guaranteed after 5 minutes of operation at $T_{A}=+25^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{~B}$ ias C urrent specifications are guaranteed maximum at either input after 5 minutes of operation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For higher temperature, the current doubles every $10^{\circ} \mathrm{C}$.
${ }^{3}$ D efined as voltages between inputs, such that neither exceeds $\pm 10 \mathrm{~V}$ from ground.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS'

Supply Voltage . $\pm 18 \mathrm{~V}$ Internal Power Dissipation² 500 mW Input Voltage ${ }^{3}$. $\pm 18 \mathrm{~V}$
Output Short Circuit D uration Indefinite Differential Input Voltage $. \ldots+V_{s}$ and $-V_{s}$ Storage Temperature Range (Q, H) $\ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (N, R) $\ldots-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
O perating Temperature Range
AD 548J/K $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ AD548A/B/C $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ AD548S $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead T emperature R ange (Soldering 60 sec) $+300^{\circ} \mathrm{C}$ notes
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ T hermal Characteristics: 8-Pin SOIC Package: $\theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=42^{\circ} \mathrm{C} / \mathrm{W}$; 8-Pin Plastic Package: $\theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} / \mathrm{W} ; 8$-Pin Cerdip Package: $\theta_{\mathrm{J}} \mathrm{C}=22^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}=$ $110^{\circ} \mathrm{C} / \mathrm{W} ; 8$-Pin M etal C an Package: $\theta_{\mathrm{JC}}=65^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$.
${ }^{3}$ F or supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Figure 1. Input Voltage Range vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Supply Voltage

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).
Contact factory for latest dimensions

Figure 3. Output Voltage Swing vs. Load Resistance

Figure 6. Input Bias Current vs. Temperature

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD548 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 7. Input Bias Current vs. Common-Mode Voltage

Figure 10. Open Loop Frequency Response

Figure 13. CMRR vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

Figure 8. Change in Offset Voltage vs. Warm-Up Time

Figure 11. Open Loop Voltage Gain vs. Supply Voltage

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

Figure 9. Open Loop Gain vs.
Temperature

Figure 12. PSRR vs. Frequency

Figure 15. Output Swing and Error Voltage vs. Output Settling Time

Figure 18. Total Noise vs. Source Impedance

Figure 19a. Unity Gain Follower

Figure 20a. Utility Gain Inverter

Figure 19b. Unity Gain Follower Pulse Response (Large Signal)

Figure 20b. Utility Gain Inverter Pulse Response (Large Signal)

Figure 19c. Unity Gain Follower Pulse Response (Small Signal)

Figure 20c. Unity Gain Inverter Pulse Response (Small Signal)

Applying the AD548

Figure 21. Offset Null Configuration

LAYOUT

T o take full advantage of the AD 548's 10 pA max input current, parasitic leakages must be kept below an acceptable level. T he practical limit of the resistance of epoxy or phenolic circuit board material is between $1 \times 10^{12} \Omega$ and $3 \times 10^{12} \Omega$. This can result in an additional leakage of 5 pA between an input of 0 V and $\mathrm{a}-15 \mathrm{~V}$ supply line. T eflon or a similar low leakage material (with a resistance exceeding $10^{17} \Omega$) should be used to isolate high impedance input lines from adjacent lines carrying high voltages. The insulator should be kept clean, since contaminants will degrade the surface resistance.
A metal guard completely surrounding the high impedance nodes and driven by a voltage near the common-mode input potential can also be used to reduce some parasitic leakages. The guarding pattern in Figure 22 will reduce parasitic leakage due to finite board surface resistance; but it will not compensate for a low volume resistivity board.

METAL CAN

MINI-DIP

Figure 22. Board Layout for Guarding Inputs

INPUT PROTECTION

The AD 548 is guaranteed to withstand input voltages equal to the power supply potential. Exceeding the negative supply voltage on either input will forward bias the substrate junction of the chip. The induced current may destroy the amplifier due to excess heat.
Input protection is required in applications such as a flame detector in a gas chromatograph, where a very high potential may be applied to the input terminals during a sensor fault condition. Figure 23 shows a simple current limiting scheme that can be used. $\mathrm{R}_{\text {Protect }}$ should be chosen such that the maximum overload current is 1.0 mA ($100 \mathrm{k} \Omega$ for a 100 V overload, for example).
Exceeding the negative common-mode range on either input terminal causes a phase reversal at the output, forcing the amplifier output to the corresponding high or low state. Exceeding the negative common-mode on both inputs simultaneously forces the output high. Exceeding the positive common-mode range on a single input doesn't cause a phase reversal, but if both inputs exceed the limit the output will be forced high. In all cases, normal amplifier operation is resumed when input voltages are brought back within the common-mode range.

Figure 23. Input Protection of IV Converter

D/A CONVERTER OUTPUT BUFFER

The circuit in Figure 24 shows the AD 548 and AD 7545 12-bit CM OS D/A converter in a unipolar binary configuration. $\mathrm{V}_{\text {OUT }}$ will be equal to $\mathrm{V}_{\text {REF }}$ attenuated by a factor depending on the digital word. $\mathrm{V}_{\text {REF }}$ sets the full scale. O verall gain is trimmed by adjusting $R_{\text {IN }}$. The AD 548's low input offset voltage, low drift and clean dynamics make it an attractive low power output buffer.
The input offset voltage of the AD 548 output amplifier results in an output error voltage. This error voltage equals the input offset voltage of the op amp times the noise gain of the amplifier.

Figure 24. AD548 Used as DAC Output Amplifier That is:

$$
\mathrm{V}_{O S} O \text { utput }=\mathrm{V}_{\text {OS }} \operatorname{Input}\left(1+\frac{\mathrm{R}_{\mathrm{FB}}}{\mathrm{R}_{0}}\right)
$$

$R_{F B}$ is the feedback resistor for the op amp, which is internal to the $D A C$. R_{0} is the $D A C$'s $R-2 R$ ladder output resistance. The value of R_{0} is code dependent. This has the effect of changing the offset error voltage at the amplifier's output. An output amplifier with a sub millivolt input offset voltage is needed to preserve the linearity of the DAC's transfer function.
The AD 548 in this configuration provides a 700 kHz small signal bandwidth and $1.8 \mathrm{~V} / \mu \mathrm{s}$ typical slew rate. The 33 pF capacitor across the feedback resistor optimizes the circuit's response. The oscilloscope photos in Figures 25 and 26 show small and large signal outputs of the circuit in Figure 24. U pper traces show the input signal $\mathrm{V}_{\text {IN }}$. L ower traces are the resulting output voltage with the DAC's digital input set to all 1s. The AD 548 settles to $\pm 0.01 \%$ for a 20 V input step in $14 \mu \mathrm{~s}$.

Figure 25. Response to ± 20 V p-p Reference Square Wave

Figure 26. Response to $\pm 100 \mathrm{mV}$ p-p Reference Square Wave

PHOTODIODE PREAMP

The performance of the photodiode preamp shown in Figure 27 is enhanced by the AD 548's low input current, input voltage offset and offset voltage drift. The photodiode sources a current proportional to the incident light power on its surface. R_{F} converts the photodiode current to an output voltage equal to $R_{F} \times I_{S}$.

Figure 27.
An error budget illustrating the importance of low amplifier input current, voltage offset and offset voltage drift to minimize output voltage errors can be developed by considering the equivalent circuit for the small ($0.2 \mathrm{~mm}^{2}$ area) photodiode shown in Figure 27. The input current results in an error proportional to the feedback resistance used. The amplifier's offset will produce an error proportional to the preamp's noise gain ($I+R_{F} / R_{S H}$), where $R_{S H}$ is the photodiode shunt resistance. The amplifier's input current will double with every $10^{\circ} \mathrm{C}$ rise in temperature, and the photodiode's shunt resistance halves with every $10^{\circ} \mathrm{C}$ rise. The error budget in Figure 28 assumes a room temperature photodiode $R_{S H}$ of $500 \mathrm{M} \Omega$, and the maximum input current and input offset voltage specs of an AD 548C.

TEMP ${ }^{\circ} \mathbf{C}$	$\mathbf{R}_{\mathbf{S H}} \mathbf{(M \Omega)}$	$\mathbf{V}_{\mathbf{O S}}(\boldsymbol{\mu} \mathbf{V})$	$\left(\mathbf{1}+\mathbf{R}_{\mathbf{F}} / \mathbf{R}_{\mathbf{S H}}\right) \mathbf{V}_{\mathbf{O S}}$	$\mathbf{I}_{\mathbf{B}}(\mathbf{p A})$	$\mathbf{I}_{\mathbf{B}} \mathbf{R}_{\mathbf{F}}$	TOTAL
-25	15,970	150	$151 \mu \mathrm{~V}$	0.30	$30 \mu \mathrm{~V}$	$181 \mu \mathrm{~V}$
0	2,830	200	$207 \mu \mathrm{~V}$	2.26	$262 \mu \mathrm{~V}$	$469 \mu \mathrm{~V}$
+25	500	250	$300 \mu \mathrm{~V}$	10.00	1.0 mV	1.30 mV
+50	88.5	300	$640 \mu \mathrm{~V}$	56.6	5.6 mV	6.24 mV
+75	15.6	350	2.6 mV	320	32 mV	34.6 mV
+85	7.8	370	5.1 mV	640	64 mV	69.1 mV

Figure 28. Photo Diode Pre-Amp Errors Over Temperature
The capacitance at the amplifier's negative input (the sum of the photodiode's shunt capacitance, the op amp's differential input capacitance, stray capacitance due to wiring, etc.) will cause a rise in the preamp's noise gain over frequency. T his can result in excess noise over the bandwidth of interest. C_{F} reduces the noise gain "peaking" at the expense of bandwidth.

INSTRUMENTATION AMPLIFIER

The AD 548C's maximum input current of 10 pA makes it an excellent building block for the high input impedance instrumentation amplifier shown in Figure 29. T otal current drain for this circuit is under $600 \mu \mathrm{~A}$. T his configuration is optimal for conditioning differential voltages from high impedance sources.
The overall gain of the circuit is controlled by R_{G}, resulting in the following transfer function:

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=1+\frac{\left(R_{1}+R_{2}\right)}{R_{G}}
$$

Figure 29. Low Power Instrumentation Amplifier
Gains of 1 to 100 can be accommodated with gain nonlinearities of less than 0.01%. Referred to input errors, which contribute an output error proportional to in amp gain, include a maximum untrimmed input offset voltage of 0.5 mV and an input offset voltage drift over temperature of $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Output errors, which are independent of gain, will contribute an additional 0.5 mV offset and $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift. The maximum input current is 15 pA over the common-mode range, with a common-mode impedance of over $1 \times 10^{12} \Omega$. Resistor pairs R 3/R 5 and R 4/R6 should be ratio matched to 0.01% to take full advantage of the AD 548's high common-mode rejection. C apacitors C 1 and C1' compensate for peaking in the gain over frequency caused by input capacitance when gains of 1 to 3 are used.
The -3 dB small signal bandwidth for this low power instrumentation amplifier is 700 kHz for a gain of 1 and 10 kHz for a gain of 100 . The typical output slew rate is $1.8 \mathrm{~V} / \mu \mathrm{s}$.

LOG RATIO AMPLIFIER

Log ratio amplifiers are useful for a variety of signal conditioning applications, such as linearizing exponential transducer outputs and compressing analog signals having a wide dynamic range. The AD 548's picoamp level input current and low input offset voltage make it a good choice for the front-end amplifier of the log ratio circuit shown in Figure 30. T his circuit produces an output voltage equal to the log base 10 of the ratio of the input currents I_{1} and I_{2}. Resistive inputs R1 and R2 are provided for voltage inputs.
Input currents I_{1} and I_{2} set the collector currents of Q1 and Q2, a matched pair of logging transistors. Voltages at points A and B are developed according to the following familiar diode equation:

$$
V_{B E}=(k T / q) \ln \left(I_{C} / I_{E S}\right)
$$

In this equation, k is B oltzmann's constant, T is absolute temperature, q is an electron charge, and I_{ES} is the reverse saturation current of the logging transistors. The difference of these two voltages is taken by the subtractor section and scaled by a factor of approximately 16 by resistors R9, R 10, and R8. Temperature

Figure 30. Log Ratio Amplifier
compensation is provided by resistors R 8 and R 15 , which have a positive $3500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. The transfer function for the output voltage is:

$$
V_{\text {OUT }}=1 \mathrm{~V} \log _{10}\left(I_{2} / I_{1}\right)
$$

F requency compensation is provided by R11, R12, C1, and C2. Small signal bandwidth is approximately 300 kHz at input currents above $100 \mu \mathrm{~A}$ and will proportionally decrease with lower signal levels. D 1, D 2, R13, and R14 compensate for the effects of the two logging transistors' ohmic emitter resistance.
T o trim this circuit, set the two input currents to $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\text {OUt }}$ to zero by adjusting the potentiometer on A 3 . Then set I_{2} to $1 \mu \mathrm{~A}$ and adjust the scale factor such that the output voltage is 1 V by trimming potentiometer R10. Offset adjustment for A1 and A2 is provided to increase the accuracy of the voltage inputs.
This circuit ensures a 1\% log conformance error over an input current range of 300 pA to 1 mA , with low level accuracy limited by the AD 548's input current. The low level input voltage accuracy of this circuit is limited by the input offset voltage and drift of the AD 548.

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
TO-99 (H) Package

Plastic Mini-DIP (N) Package

