FEATURES

True single-supply operation
Input voltage range extends below ground
Output swings rail-to-rail
Single-supply capability from 5 V to 30 V
Dual-supply capability from $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
High load drive
Capacitive load drive of $\mathbf{3 5 0} \mathbf{~ p F , G}=+1$
Minimum output current of 15 mA
Excellent ac performance for low power
$800 \mu \mathrm{~A}$ maximum quiescent current per amplifier
Unity-gain bandwidth: 1.8 MHz
Slew rate of $3 \mathrm{~V} / \mu \mathrm{s}$
Good dc performance
$800 \mu \mathrm{~V}$ maximum input offset voltage
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical offset voltage drift
25 pA maximum input bias current
Low noise
13 nV/VHz @ 10 kHz
No phase inversion

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Photodiode preamps

Active filters

12-bit to 14-bit data acquisition systems Low power references and regulators

CONNECTION DIAGRAM

Figure 1. 8-Lead SOIC_N (R Suffix)

GENERAL DESCRIPTION

The AD822-EP is a dual precision, low power FET input op amp that can operate from a single supply of 5 V to 30 V or dual supplies of $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$. It has true single-supply capability with an input voltage range extending below the negative rail, allowing the AD822 to accommodate input signals below ground in the single-supply mode. Output voltage swing extends to within 10 mV of each rail, providing the maximum output dynamic range.

Figure 2. Input Voltage Noise vs. Frequency
Offset voltage of $800 \mu \mathrm{~V}$ maximum, offset voltage drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias currents below 25 pA , and low input voltage noise provide dc precision with source impedances up to a gigaohm. The 1.8 MHz unity-gain bandwidth, -93 dB THD at 10 kHz , and $3 \mathrm{~V} / \mu \mathrm{s}$ slew rate are provided with a low supply current of $800 \mu \mathrm{~A}$ per amplifier.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

AD822-EP

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
Connection Diagram 1
General Description 1
Revision History 2
Specifications. 4
Absolute Maximum Ratings 10
Thermal Resistance 10
ESD Caution 10
Typical Performance Characteristics 11
Outline Dimensions. 18
Ordering Guide 18

REVISION HISTORY

6/10—Revision 0: Initial Version

The AD822-EP drives up to 350 pF of direct capacitive load as a follower and provides a minimum output current of 15 mA . This allows the amplifier to handle a wide range of load conditions. Its combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for the single-supply user.

The AD822-EP operates over the military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The AD822-EP is offered in an 8-lead SOIC_N package.
Full details about this enhanced product are available in the AD822 data sheet, which should be consulted in conjunction with this data sheet.

Figure 3. Gain-of-2 Amplifier; $V_{s}=5 \mathrm{~V}, 0 \mathrm{~V}$, $V_{I N}=2.5 \mathrm{~V}$ Sine Centered at $1.25 \mathrm{~V}, R_{L}=100 \Omega$

AD822-EP

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, 5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	T Grade			Unit
		Min	Typ	Max	
DC PERFORMANCE					
Initial Offset			0.1	0.8	mV
Maximum Offset Over Temperature			0.5	1.2	mV
Offset Drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$ to 4 V		2	25	pA
At $\mathrm{Tmax}^{\text {max }}$			0.5	6	nA
Input Offset Current			2	20	pA
At $\mathrm{T}_{\text {max }}$			0.5		nA
Open-Loop Gain	$\mathrm{V}_{\text {out }}=0.2 \mathrm{~V}$ to 4 V				
	$\mathrm{RL}=100 \mathrm{k} \Omega$	500	1000		V / mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		400			V / mV
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	150		V / mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		80			V / mV
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	30		V / mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		10			V / mV
NOISE/HARMONIC PERFORMANCE					
Input Voltage Noise					
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			2		$\mu \mathrm{V}$ p-p
$\mathrm{f}=10 \mathrm{~Hz}$			25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{f}=100 \mathrm{~Hz}$			21		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{f}=1 \mathrm{kHz}$			16		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{f}=10 \mathrm{kHz}$			13		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise					
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			18		fA p-p
$\mathrm{f}=1 \mathrm{kHz}$			0.8		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
Harmonic Distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{aligned} & \mathrm{RL}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.25 \mathrm{~V} \text { to } 4.75 \mathrm{~V} \end{aligned}$		-93		dB
DYNAMIC PERFORMANCE					
Unity-Gain Frequency			1.8		MHz
Full Power Response	Vout $\mathrm{p}-\mathrm{p}=4.5 \mathrm{~V}$		210		kHz
Slew Rate			3		V/ $/ \mathrm{s}$
Settling Time					
To 0.1\%	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ to 4.5 V		1.4		$\mu \mathrm{s}$
To 0.01\%	Vout $=0.2 \mathrm{~V}$ to 4.5 V		1.8		
MATCHING CHARACTERISTICS					
Initial Offset				1.0	mV
Maximum Offset Over Temperature				1.6	mV
Offset Drift			3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current				20	pA
Crosstalk @ f= 1 kHz	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-130		dB
Crosstalk @ f= 100 kHz	$\mathrm{RL}=5 \mathrm{k} \Omega$		-93		dB

Parameter	Test Conditions/Comments	T Grade			Unit	
		Min	Typ	Max		
INPUT CHARACTERISTICS						
Input Voltage Range ${ }^{1}, \mathrm{~T}_{\text {min }}$ to $\mathrm{T}_{\text {Max }}$		-0.2		+4	V	
Common-Mode Rejection Ratio (CMRR)	V см $=0 \mathrm{~V}$ to 2 V	66	80		dB	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {Max }}$	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$ to 2 V	66			dB	
Input Impedance						
Differential			$10^{13}\| \| 0.5$		$\Omega \\| \mathrm{pF}$	
Common Mode			$10^{13} \mid 2.8$		$\Omega \\| \mathrm{pF}$	
OUTPUT CHARACTERISTICS						
Output Saturation Voltage ${ }^{2}$						
Vol - $\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {SINK }}=20 \mu \mathrm{~A}$		5	7	mV	
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$				10	mV	
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {OH }}$	$\mathrm{I}_{\text {SOURCE }}=20 \mu \mathrm{~A}$		10	14	mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				20	mV	
$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{EE}}$	$\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$		40	55	mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				80	mV	
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$	$\mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA}$		80	110	mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				160	mV	
$\mathrm{V}_{\text {ol }}-\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$		300	500	mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$				1000	mV	
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {о }}$	$\mathrm{ISOURCE}=15 \mathrm{~mA}$		800	1500	mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				1900	mV	
Operating Output Current		15			mA	
$\mathrm{T}_{\text {min }}$ to $\mathrm{Tmax}_{\text {max }}$		12			mA	
Capacitive Load Drive			350		pF	
POWER SUPPLY						
Quiescent Current, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$			1.24	1.6	mA	
Power Supply Rejection	$\mathrm{V}+=5 \mathrm{~V}$ to 15 V	66	80		dB	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		66			dB	

${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ($\mathrm{V}+-1 \mathrm{~V}$) to $\mathrm{V}+$. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
${ }^{2} V_{O L}-V_{E E}$ is defined as the difference between the lowest possible output voltage ($V_{O L}$) and the negative voltage supply rail ($\mathrm{V}_{E E}$). $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$.

AD822-EP

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, Vout $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	T Grade			Unit	
		Min	Typ	Max		
DC PERFORMANCE						
Initial Offset			0.1	0.8	mV	
Maximum Offset Over Temperature			0.5	1.5	mV	
Offset Drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current	$V_{\text {СM }}=-5 \mathrm{~V}$ to +4 V		2	25	pA	
At $\mathrm{T}_{\text {max }}$			0.5	6	nA	
Input Offset Current			2	20	pA	
At $\mathrm{Tax}_{\text {max }}$			0.5		nA	
Open-Loop Gain	Vout $=-4 \mathrm{~V}$ to +4 V					
	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	400	1000		V / mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		400			V / mV	
	$\mathrm{RL}=10 \mathrm{k} \Omega$	80	150		V / mV	
$\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}$		80			V / mV	
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	20	30		V / mV	
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		10			V / mV	
NOISE/HARMONIC PERFORMANCE						
Input Voltage Noise						
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			2		$\mu \mathrm{V}$ p-p	
$\mathrm{f}=10 \mathrm{~Hz}$			25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=100 \mathrm{~Hz}$			21		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=1 \mathrm{kHz}$			16		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=10 \mathrm{kHz}$			13		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
Input Current Noise						
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			18		fA p-p	
$\mathrm{f}=1 \mathrm{kHz}$			0.8		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$	
Harmonic Distortion	$\mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega$					
$\mathrm{f}=10 \mathrm{kHz}$	$\mathrm{V}_{\text {OUT }}= \pm 4.5 \mathrm{~V}$		-93		dB	
DYNAMIC PERFORMANCE						
Unity-Gain Frequency			1.9		MHz	
Full Power Response	$V_{\text {Out }} p-p=9 V$		105		kHz	
Slew Rate			3		V/ $/ \mathrm{s}$	
Settling Time						
to 0.1\%	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\pm 4.5 \mathrm{~V}$		1.4		$\mu \mathrm{s}$	
to 0.01\%	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\pm 4.5 \mathrm{~V}$		1.8		$\mu \mathrm{s}$	
MATCHING CHARACTERISTICS						
Initial Offset				1.0	mV	
Maximum Offset Over Temperature				3	mV	
Offset Drift			3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current				25	pA	
Crosstalk @ f= 1 kHz	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-130		dB	
Crosstalk @f= 100 kHz	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-93		dB	
INPUT CHARACTERISTICS						
Input Voltage Range ${ }^{1}, \mathrm{~T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		-5.2		+4	V	
Common-Mode Rejection Ratio (CMRR)	$\mathrm{V}_{\text {см }}=-5 \mathrm{~V}$ to +2 V	66	80		dB	
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$V_{\text {CM }}=-5 \mathrm{~V}$ to +2 V	66			dB	
Input Impedance						
Differential			$10^{13} \mid 0.5$		$\Omega \\| \mathrm{pF}$	
Common Mode			$10^{13}\| \| 2.8$		$\Omega \\| \mathrm{pF}$	

Parameter	Test Conditions/Comments	T Grade			Unit
		Min	Typ	Max	
OUTPUT CHARACTERISTICS					
Output Saturation Voltage ${ }^{2}$					
V_{oL} - $\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {SIINK }}=20 \mu \mathrm{~A}$		5	7	mV
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$				10	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {OH }}$	$\mathrm{I}_{\text {SOURCE }}=20 \mu \mathrm{~A}$		10	14	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				20	mV
$\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$	$\mathrm{ISIINK}=2 \mathrm{~mA}$		40	55	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				80	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$	$\mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA}$		80	110	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				160	mV
$\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$		300	500	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				1000	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$	$I_{\text {Source }}=15 \mathrm{~mA}$		800	1500	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				1900	mV
Operating Output Current		15			mA
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		12			mA
Capacitive Load Drive			350		pF
POWER SUPPLY					
Quiescent Current, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.3	1.6	mA
Power Supply Rejection	$\mathrm{V}_{\text {SY }}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	66	80		dB
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		66			dB

${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ($\mathrm{V}+-1 \mathrm{~V}$) to $\mathrm{V}+$. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
${ }^{2} \mathrm{~V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{EE}}$ is defined as the difference between the lowest possible output voltage (V_{OL}) and the negative voltage supply rail (V_{EE}). $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{OH}}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$.

AD822-EP

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	T Grade			Unit	
		Min	Typ	Max		
DC PERFORMANCE						
Initial Offset			0.4	2	mV	
Maximum Offset Over Temperature			0.5	3	mV	
Offset Drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$		2	25	pA	
	$V_{\text {cm }}=-10 \mathrm{~V}$		40		pA	
At $\mathrm{T}_{\text {max }}$	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$		0.5	6	nA	
Input Offset Current			2	20	pA	
At TMax			0.5		nA	
Open-Loop Gain	$\mathrm{V}_{\text {OUt }}=-10 \mathrm{~V}$ to +10 V					
	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	500	2000		V / mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		500			V / mV	
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	100	500		V / mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		100			V / mV	
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	30	45		V / mV	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		20			V / mV	
NOISE/HARMONIC PERFORMANCE						
Input Voltage Noise						
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			2		$\mu \mathrm{V}$ p-p	
$\mathrm{f}=10 \mathrm{~Hz}$			25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=100 \mathrm{~Hz}$			21		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=1 \mathrm{kHz}$			16		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
$\mathrm{f}=10 \mathrm{kHz}$			13		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
Input Current Noise						
$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			18		fA p-p	
$\mathrm{f}=1 \mathrm{kHz}$			0.8		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$	
Harmonic Distortion	$\mathrm{RL}=10 \mathrm{k} \Omega$					
$\mathrm{f}=10 \mathrm{kHz}$	$V_{\text {OUT }}= \pm 10 \mathrm{~V}$		-85		dB	
DYNAMIC PERFORMANCE						
Unity-Gain Frequency			1.9		MHz	
Full Power Response	$V_{\text {out }} \mathrm{p}-\mathrm{p}=20 \mathrm{~V}$		45		kHz	
Slew Rate			3		$\mathrm{V} / \mathrm{\mu s}$	
Settling Time						
to 0.1\%	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$		4.1		$\mu \mathrm{s}$	
to 0.01\%	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$		4.5		$\mu \mathrm{s}$	
MATCHING CHARACTERISTICS						
Initial Offset				3	mV	
Maximum Offset Over Temperature				4	mV	
Offset Drift			3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current				25	pA	
Crosstalk @ $\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-130		dB	
Crosstalk @f= 100 kHz	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-93		dB	
INPUT CHARACTERISTICS						
Input Voltage Range ${ }^{1}$, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		-15.2		+14	V	
Common-Mode Rejection Ratio (CMRR)	$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to +12 V	70	80		dB	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to +12 V	70			dB	
Input Impedance						
Differential			$10^{13} \mid 0.5$		$\Omega \\| \mathrm{pF}$	
Common Mode			$10^{13}\| \| 2.8$		$\Omega \\| \mathrm{pF}$	

Parameter	Test Conditions/Comments	T Grade			Unit
		Min	Typ	Max	
OUTPUT CHARACTERISTICS					
Output Saturation Voltage ${ }^{2}$					
$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {SINK }}=20 \mu \mathrm{~A}$		5	7	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$				10	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {OH }}$	$I_{\text {Source }}=20 \mu \mathrm{~A}$		10	14	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				20	mV
$\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$		40	55	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				80	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$	ISOURCE $=2 \mathrm{~mA}$		80	110	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				160	mV
$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{EE}}$	$\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$		300	500	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				1000	mV
$\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$	$\mathrm{I}_{\text {SOURCE }}=15 \mathrm{~mA}$		800	1500	mV
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$				1900	mV
Operating Output Current		20			mA
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		15			mA
Capacitive Load Drive			350		pF
POWER SUPPLY					
Quiescent Current, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.4	1.8	mA
Power Supply Rejection	$\mathrm{V}_{\mathrm{SY}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	70	80		dB
$\mathrm{T}_{\text {min }}$ to $\mathrm{Tmax}^{\text {max }}$		70			dB

[^0]
AD822-EP

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation	Observe Maximum Junction Temperature 8-Lead SOIC_N (R) Input Voltage Output Short-Circuit Duration $((\mathrm{V}-)-20 \mathrm{~V})$ to Differential Input Voltage Storage Temperature Range (R) Operating Temperature Range Maximum Junction Temperature Lead Temperature \quad (Soldering, 60 sec)

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {JA }}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
8-lead SOIC_N (R)	160	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Distribution of Offset Voltage (390 Units)

Figure 5. Typical Distribution of Offset Voltage Drift (100 Units)

Figure 6. Typical Distribution of Input Bias Current (213 Units)

Figure 7. Input Bias Current vs. Common-Mode Voltage; $V_{s}=5 \mathrm{~V}, 0 \mathrm{~V}$, and $V_{s}= \pm 5 \mathrm{~V}$

Figure 8. Input Bias Current vs. Common-Mode Voltage; $V_{s}= \pm 15 \mathrm{~V}$

Figure 9. Input Bias Current vs. Temperature; $V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V}$

AD822-EP

Figure 10. Open-Loop Gain vs. Load Resistance

Figure 11. Open-Loop Gain vs. Temperature

Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads

Figure 13. Input Error Voltage with Output Voltage Within 300 mV of Either Supply Rail for Various Resistive Loads; $V_{s}= \pm 5 \mathrm{~V}$

Figure 14. Input Voltage Noise vs. Frequency

Figure 15. Total Harmonic Distortion (THD) vs. Frequency

Figure 16. Open-Loop Gain and Phase Margin vs. Frequency

Figure 17. Output Impedance vs. Frequency

Figure 18. Output Swing and Error vs. Settling Time

Figure 19. Common-Mode Rejection vs. Frequency

Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from Supply Rails ($V_{s}-V_{C M}$)

Figure 21. Output Saturation Voltage vs. Load Current

AD822-EP

Figure 22. Output Saturation Voltage vs. Temperature

Figure 23. Short-Circuit Current Limit vs. Temperature

Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature

Figure 25. Power Supply Rejection vs. Frequency

Figure 26. Large Signal Frequency Response

Figure 27. Crosstalk vs. Frequency

Figure 28. Unity-Gain Follower

Figure 29. $20 \mathrm{Vp}-\mathrm{p}, 25 \mathrm{kHz}$ Sine Wave Input; Unity-Gain Follower; $V_{s}= \pm 15 \mathrm{~V}$,

$$
R_{L}=600 \Omega
$$

Figure 30. Crosstalk Test Circuit

Figure 31. Large Signal Response Unity-Gain Follower; $V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$

Figure 32. Small Signal Response Unity-Gain Follower; $V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$

Figure 33. $V_{s}=5 \mathrm{~V}, 0 \mathrm{~V}$; Unity-Gain Follower Response to 0 V to 4 V Step

Figure 34. Unity-Gain Follower

AD822-EP

Figure 35. Gain-of-Two Inverter

Figure 36. $V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$; Unity-Gain Follower Response to 0 V to 5 V Step

Figure 37. $V_{s}=5 \mathrm{~V}, 0 \mathrm{~V}$; Unity-Gain Follower Response to 40 mV Step, Centered 40 mV above Ground, $R_{L}=10 \mathrm{k} \Omega$

Figure 38. $V_{s}=5 \mathrm{~V}, 0 \mathrm{~V}$; Gain-of-2 Inverter Response to 20 mV Step, Centered 20 mV Below Ground, $R_{L}=10 \mathrm{k} \Omega$

Figure 39. Vs $=5 \mathrm{~V}, 0 \mathrm{~V}$; Gain-of-2 Inverter Response to 2.5 V Step, Centered -1.25 V Below Ground, $R_{L}=10 \mathrm{k} \Omega$

Figure 40. $V_{s}=3 \mathrm{~V}, 0 \mathrm{~V}$; Gain-of-2 Inverter, $V_{I N}=1.25 \mathrm{~V}, 25 \mathrm{kHz}$, Sine Wave Centered at $-0.75 \mathrm{~V}, R_{L}=600 \Omega$

(a)

(b)

Figure 41. (a) Response with $R_{P}=0 ; V_{I N}$ from $0 V$ to $+V_{S}$ (b) $V_{I N}=0 V$ to $+V_{s}+200 \mathrm{mV}$
$V_{\text {OUT }}=0 V$ to $+V_{S}$
$R_{P}=49.9 \mathrm{k} \Omega$

AD822-EP

OUTLINE DIMENSIONS

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
AD822TRZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD822TRZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

[^1]SPICE model is available at www.analog.com.
\square AD822-EP

NOTES

AD822-EP

NOTES

[^0]: ${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+-1 V) to $\mathrm{V}+$. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
 ${ }^{2} \mathrm{~V}_{\mathrm{OL}}-\mathrm{V}_{E E}$ is defined as the difference between the lowest possible output voltage (V_{OL}) and the negative voltage supply rail (V_{EE}). $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{OH}}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{cC}}\right)$.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

