feATURES

- Wide Input Voltage Range: 3.5V to 30 V
- Low Quiescent Current: 7mA
- Internal 8A Switch (10A for LT1270A)
- Very Few External Parts Required
- Self-Protected Against Overloads
- Shutdown Mode Draws Only 100 μ A Supply Current
- Flyback-Regulated Mode Has Fully Floating Outputs
- Can be Externally Synchronized
(See LT1072 Data Sheet)
- Comes in Standard 5-Pin TO-220 Package

APPLICATIONS

- High Efficiency Buck Converter
- PC Power Supply with Multiple Outputs
- Battery Upconverter
- Negative-to-Positive Converter

USER NOTE:

This data sheet is only intended to provide specifications, graphs and a general functional description of the LT1270A/LT1270. Application circuits are included to show the capability of the LT1270A/LT1270. A complete design manual (AN-19) should be obtained to assist in developing new designs. AN-19 contains a comprehensive discussion of both the LT1070 and the external components used with it, as well as complete formulas for calculating the values of these components. AN-19 can also be used for the LT1270A/LT1270 by factoring in the higher switch current rating and higher operating frequency.
A comprehensive CAD program called SwitcherCad is also available. Contact the local sales office in your area or the factory direct.

DESCRIPTIOn

The LT1270A/LT1270 are monolithic high power switching regulators. Identical to the popular LT1070, except for switching frequency (60 kHz) and higher switch current, they can be operated in all standard switching configurations including buck, boost, flyback, and inverting. A high current, high efficiency switch is included on the die along with all oscillator, control, and protection circuitry. Integration of all functions allows the LT1270A/LT1270 to be built in a standard TO-220 power package. This makes it extremely easy to use and provides "bust proof" operation similar to that obtained with 3-pin linear regulators.

The LT1270A/LT1270 operate with supply voltages from 3.5 V to 30 V , and draw only 7 mA quiescent current. By utilizing current-mode switching techniques, they provide excellent AC and DC load and line regulation.

The LT1270A/LT1270 use adaptive anti-sat switch drive to allow very wide ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total supply current to $100 \mu A$ typical for standby operation.

TYPICAL APPLICATION

High Efficiency ${ }^{\dagger}$ Buck Converter

Maximum Output Power*

LT1270• •TA02
*MULTIPLY BY 1.2 FOR LT1270A. BUCK MODE OUTPUT POWER $\approx(7.5 A)\left(V_{\text {OUT }}\right)$ ${ }^{\dagger}$ TRANSFORMER TURNS RATIO MUST BE OPTIMUM TO ACHIEVE FULL POWER

absolute maximum ratings

PACKAGE/ORDER INFORMATION
(Note 1)
Supply Voltage .. 30V
Switch Output Voltage ... 60V
Feedback Pin Voltage (Transient, 1ms) $\pm 15 \mathrm{~V}$
Operating Junction Temperature Range
LT1270AC/LT1270C (Oper.) \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1270AC/LT1270C (Short-Ckt) $0^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRTCAL CHARACTERISTICS The o denotes specifications which apply over the full operating tempera-

 ture range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}$, switch pin open, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage | Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$ | \bullet | $\begin{aligned} & \hline 1.224 \\ & 1.214 \end{aligned}$ | $\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$ | $\begin{aligned} & \hline 1.264 \\ & 1.274 \end{aligned}$ | V |
| I_{B} | Feedback Input Current | $\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}$ | | | 350 | $\begin{gathered} \hline 750 \\ 1100 \end{gathered}$ | nA |
| gm | Error Amplifier Transconductance | $\Delta \mathrm{I}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$ | \bullet | $\begin{aligned} & 3000 \\ & 2400 \end{aligned}$ | 4400 | $\begin{aligned} & 6000 \\ & 7000 \end{aligned}$ | $\mu \mathrm{mho}$ $\mu \mathrm{mho}$ |
| | Error Amplifier Source of Sink Current | $\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$ | \bullet | $\begin{aligned} & 150 \\ & 120 \end{aligned}$ | 200 | $\begin{aligned} & 350 \\ & 400 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| | Error Amplifier Clamp Voltage | Hi Clamp, $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$
 Lo Clamp, $\mathrm{V}_{F B}=1.5 \mathrm{~V}$ | | $\begin{aligned} & 1.80 \\ & 0.25 \end{aligned}$ | 0.38 | $\begin{aligned} & 2.30 \\ & 0.52 \end{aligned}$ | V |
| | Reference Voltage Line Regulation | $3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$ | \bullet | | | 0.03 | \%/V |
| A_{V} | Error Amplifier Voltage Gain | $0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 1.4 \mathrm{~V}$ | | 500 | 800 | | V/V |
| | Minimum Input Voltage | | \bullet | | 2.8 | 3.0 | V |
| $\underline{\mathrm{I}_{Q}}$ | Supply Current | $3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.6 \mathrm{~V}$ | | | 7 | 10 | mA |
| | Control Pin Threshold | Duty Cycle $=0$ | \bullet | $\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$ | 0.90 | $\begin{aligned} & 1.08 \\ & 1.25 \end{aligned}$ | V |
| | Normal/Flyback Threshold on Feedback Pin | | | 0.40 | 0.45 | 0.54 | V |
| $\overline{V_{F B}}$ | Flyback Reference Voltage | $\mathrm{I}_{\text {FB }}=50 \mu \mathrm{~A}$ | \bullet | $\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$ | 16.3 | $\begin{aligned} & 17.6 \\ & 18.0 \end{aligned}$ | V |
| $\overline{V_{F B}}$ | Change in Flyback Reference Voltage | $0.05 \leq \mathrm{I}_{\mathrm{FB}} \leq 1 \mathrm{~mA}$ | | 4.5 | 6.8 | 8.5 | V |
| | Flyback Reference Voltage Line Regulation | $\begin{aligned} & \mathrm{I}_{\mathrm{FB}}=50 \mu \mathrm{~A} \\ & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$ | | | 0.01 | 0.03 | \%/V |
| | Flyback Amplifier Transconductance (gm) | $\Delta \mathrm{I}_{\mathrm{C}}= \pm 10 \mu \mathrm{~A}$ | | 150 | 300 | 650 | $\mu \mathrm{mho}$ |
| | Flyback Amplifier Source and Sink Current | $\begin{aligned} & V_{C}=0.6 \mathrm{~V} \text { Source } \\ & I_{F B}=50 \mu \mathrm{~A} \text { Sink } \end{aligned}$ | \bullet | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ | $\begin{aligned} & 32 \\ & 40 \end{aligned}$ | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| BV | Output Switch Breakdown Voltage | $\begin{aligned} & 3 V \leq V_{\text {IN }} \leq V_{\text {MAX }} \\ & I_{S W}=1.5 \mathrm{~mA} \end{aligned}$ | \bullet | 60 | 75 | | V |
| $\overline{\text { SAT }}$ | Output Switch ON Resistance (Note 2, 4) | $\begin{aligned} & \mathrm{T}_{J} \leq 100^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \end{aligned}$ | | | 0.12 | $\begin{aligned} & \hline 0.18 \\ & 0.22 \end{aligned}$ | Ω Ω |
| | Control Voltage to Switch Current Transconductance | | | | 12 | | A/V |
| LIM | Switch Current Limit (LT1270) (Note 4) | $\begin{aligned} & \text { Duty Cycle }=50 \%, T_{J} \leq 100^{\circ} \mathrm{C} \\ & \text { Duty Cycle }=80 \%, T_{J} \leq 100^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 8 \\ & 6 \end{aligned}$ | | $\begin{aligned} & \hline 16 \\ & 14 \end{aligned}$ | A |

ELECTRAPL CHARACTERISTIS The o denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}$, switch pin open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ILIM	Switch Current Limit (LT1270A) (Note 4)	$\begin{aligned} & \text { Duty Cycle }=50 \%, \mathrm{~T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \\ & \text { Duty Cycle }=80 \%, \mathrm{~T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{array}{r} 10.0 \\ 7.5 \end{array}$		$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$	A
$\frac{\Delta l_{\mathrm{IN}}}{\Delta l_{\mathrm{SW}}}$	Supply Current Increase During Switch-ON Time				25	40	mA / A
f	Switching Frequency		\bullet	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	60	$\begin{aligned} & \hline 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\overline{D C}_{\text {MAX }}$	Maximum Switch Duty Cycle			80	92	95	\%
	Flyback Sense Delay Time				1.5		$\mu \mathrm{S}$
	Shutdown Mode Supply Current	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.05 \mathrm{~V}$			100	400	$\mu \mathrm{A}$
	Shutdown Mode Threshold Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$	\bullet	$\begin{gathered} 100 \\ 50 \end{gathered}$	150	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Measured with V_{C} in Hi Clamp, $\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$.
Note 3: For duty cycles (DC) between 50% and 80%, minimum guaranteed
switch current is given by LLIM $=6.67(1.7-\mathrm{DC})$ for the LT1270 and $\mathrm{LIIM}=$ 8.33 (1.7 - DC) for the LT1270A.

Note 4: Minimum current limit is reduced by 0.5 A at $125^{\circ} \mathrm{C} .100^{\circ} \mathrm{C}$ test limits are guaranteed by correlation to $125^{\circ} \mathrm{C}$ tests.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL APPLICATIONS

Boost Converter (5V to 12V)

TYPICAL APPLICATIONS

Negative-to-Positive Buck-Boost Converter

*REQUIRED IF INPUT LEADS ≥ 2 " **PULSE ENGINEERING \#PE-92116

Negative Buck Converter

*REQUIRED IF INPUT LEADS ≥ 2 "
**PULSE ENGINEERING \#PE-92115

PACKAGE DESCRIPTION

T Package

5-Lead Plastic TO-220 (Standard)
(Reference LTC DWG \# 05-08-1421)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1074/HV	4.4A (Iout), 100kHz, High Efficiency Step-Down DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN: }} 7.3 \mathrm{~V} \text { to } 45 / 64 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{min})=2.21 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=8.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=10 \mu \mathrm{~A}, \\ & \mathrm{DD}-5 / 7, \text { TO220-5/7 } \end{aligned}$
LTC3414	4A (I lout), 4MHz, Synchronous Step-Down DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{min})=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=64 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}, \\ & \text { TSSOP20E } \end{aligned}$
LT3430/LT3431	60V, 2.75A (IOUT), 200/500kHz, High Efficiency Step-Down DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 5.5 \mathrm{~V} \text { to } 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{min})=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=30 \mu \mathrm{~A}, \\ & \text { TSSOP16E } \end{aligned}$

