Data Sheet

FEATURES

True rms-to-dc conversion
200 mV full scale
Laser-trimmed to high accuracy
0.5\% maximum error (AD636K)
1.0\% maximum error (AD636J)
Wide response capability
Computes rms of ac and dc signals
1 MHz, -3 dB bandwidth: V rms > 100 mV
Signal crest factor of 6 for 0.5% error dB output with 50 dB range
Low power: $\mathbf{8 0 0} \boldsymbol{\mu} \mathrm{A}$ quiescent current
Single or dual supply operation
Monolithic integrated circuit
Low cost

GENERAL DESCRIPTION

The AD636 is a low power monolithic IC that performs true rms-to-dc conversion on low level signals. It offers performance that is comparable or superior to that of hybrid and modular converters costing much more. The AD636 is specified for a signal range of 0 mV to 200 mV rms . Crest factors up to 6 can be accommodated with less than 0.5% additional error, allowing accurate measurement of complex input waveforms.

The low power supply current requirement of the AD636, typically $800 \mu \mathrm{~A}$, is ideal for battery-powered portable instruments. It operates from a wide range of dual and single power supplies, from $\pm 2.5 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$ or from +5 V to +24 V . The input and output terminals are fully protected; the input signal can exceed the power supply with no damage to the device (allowing the presence of input signals in the absence of supply voltage), and the output buffer amplifier is short-circuit protected.

The AD636 includes an auxiliary dB output derived from an internal circuit point that represents the logarithm of the rms output. The 0 dB reference level is set by an externally supplied current and can be selected to correspond to any input level from $0 \mathrm{dBm}(774.6 \mathrm{mV})$ to $-20 \mathrm{dBm}(77.46 \mathrm{mV})$. Frequency response ranges from 1.2 MHz at 0 dBm to greater than 10 kHz at -50 dBm .

The AD636 is easy to use. The device is factory-trimmed at the wafer level for input and output offset, positive and negative waveform symmetry (dc reversal error), and full-scale accuracy at 200 mV rms. Therefore, no external trims are required to achieve full-rated accuracy.

[^0]FUNCTIONAL BLOCK DIAGRAM

Figure 1.
The AD636 is available in two accuracy grades. The total error of the J -version is typically less than $\pm 0.5 \mathrm{mV} \pm 1.0 \%$ of reading, while the total error of the AD636K is less than $\pm 0.2 \mathrm{mV}$ to $\pm 0.5 \%$ of reading. Both versions are temperature rated for operation between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ and available in 14-lead SBDIP and 10 -lead TO-100 metal can.

The AD636 computes the true root-mean-square of a complex ac (or ac plus dc) input signal and gives an equivalent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value because it is a measure of the power in the signal. The rms value of an ac-coupled signal is also its standard deviation.

The 200 mV full-scale range of the AD636 is compatible with many popular display-oriented ADCs. The low power supply current requirement permits use in battery-powered hand-held instruments. An averaging capacitor is the only external component required to perform measurements to the fully specified accuracy is. Its value optimizes the trade-off between low frequency accuracy, ripple, and settling time.

An optional on-chip amplifier acts as a buffer for the input or the output signals. Used in the input, it provides accurate performance from standard $10 \mathrm{M} \Omega$ input attenuators. As an output buffer, it sources up to 5 mA .

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 7
Theory of Operation 8
RMS Measurements 8
The AD636 Buffer Amplifier 8
Frequency Response. 9
AC Measurement Accuracy and Crest Factor (CF) 9
REVISION HISTORY
5/13-Rev. D to Rev. E
Reorganized Layout Universal
Changes to Figure 1 1
Change to Table 1 4
Added Typical Performance Characteristics Section 7
Added Theory of Operation Section; Changes to Figure 7 and Figure 8 8
Changed Applying the AD636 Section to Applications Section; Changes to Figure 9, Figure 10, and Single-Supply Connection Section. 10
Changes to Figure 11 11
Changes to Figure 13 and A Complete AC Digital Voltmeter Section. 12
Changes to Figure 17 and Figure 18. 13
Changes to Ordering Guide 14
Applications 10
Standard Connection 10
Optional Trims for High Accuracy 10
Single-Supply Connection 10
Choosing the Averaging Time Constant 11
A Complete AC Digital Voltmeter. 12
A Low Power, High Input, Impedance dB Meter. 12
Circuit Description 12
Performance Data 12
Frequency Response $\pm 3 \mathrm{dBm}$ 13
Calibration 13
Outline Dimensions 14
Ordering Guide 14
11/06-Rev. C to Rev. D
Changes to General Description 1
Changes to Table 1 3
Changes to Ordering Guide 13
1/06—Rev B to Rev. C
Updated Format. Universal
Changes to Figure 1 and General Description 1
Deleted Metallization Photograph3
Added Pin Configuration and Function Description Section 6
Updated Outline Dimensions 14
Changes to Ordering Guide 14
8/99—Rev A to Rev. B

SPECIFICATIONS

$@ 25^{\circ} \mathrm{C},+\mathrm{V}_{s}=+3 \mathrm{~V}$, and $-\mathrm{V}_{s}=-5 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$

Table 1.

Model	AD636J			AD636K			Unit
	Min	Typ	Max	Min	Typ	Max	
dB OUTPUT							
Error, $\mathrm{VIN}_{\text {IN }}=7 \mathrm{mV}$ to 300 mV rms		± 0.3	± 0.5		± 0.1	± 0.2	dB
Scale Factor		-3.0			-3.0		$\mathrm{mV} / \mathrm{dB}$
Scale Factor Temperature		0.33			0.33		\% of reading/ ${ }^{\circ} \mathrm{C}$
		-0.033			-0.033		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {gef }}$ for $0 \mathrm{~dB}=0.1 \mathrm{~V} \mathrm{rms}$	2	4	8	2	4	8	$\mu \mathrm{A}$
Imer Range	1		50	1		50	$\mu \mathrm{A}$
lout TERMINAL							
Iout Scale Factor		100			100		$\mu \mathrm{A} / \mathrm{V}$ rms
lout Scale Factor Tolerance	-20	± 10	+20	-20	± 10	+20	
Output Resistance	8	10	12	8	10	12	k Ω
Voltage Compliance		$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2 V\right) \end{aligned}$		V
BUFFER AMPLIFIER							
Input and Output Voltage Range	$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & -V_{s} \text { to } \\ & \left(+V_{s}-2 V\right) \end{aligned}$			V
Input Offset Voltage, $\mathrm{R}_{\mathrm{s}}=10 \mathrm{k} \Omega$		± 0.8	± 2		± 0.5	± 1	mV
Input Bias Current		100	300		100	300	nA
Input Resistance		10^{8}			10^{8}		Ω
Output Current	$\begin{aligned} & (+5 \mathrm{~mA}, \\ & -130 \mu \mathrm{~A}) \end{aligned}$			$\begin{aligned} & (+5 \mathrm{~mA} \\ & -130 \mu \mathrm{~A}) \end{aligned}$			
Short-Circuit Current		20			20		mA
Small Signal Bandwidth		1			1		MHz
Slew Rate ${ }^{6}$		5			5		V/ $/ \mathrm{s}$
POWER SUPPLY							
Voltage, Rated Performance		+3, -5			+3, -5		V
Dual Supply	+2, -2.5		± 16.5	+2, -2.5		± 16.5	V
Single Supply	5		24	5		24	V
Quiescent Current ${ }^{7}$		0.80	1.00		0.80	1.00	mA
TEMPERATURE RANGE							
Rated Performance	0		+70	0		+70	${ }^{\circ} \mathrm{C}$
Storage	-55		+150	-55		+150	${ }^{\circ} \mathrm{C}$
TRANSISTOR COUNT		62			62		

${ }^{1}$ All minimum and maximum specifications are guaranteed. Specifications shown in boldface are tested on all production units at final electrical test and are used to calculate outgoing quality levels.
${ }^{2}$ Accuracy specified for 0 mV to 200 mV rms, dc or 1 kHz sine wave input. Accuracy is degraded at higher rms signal levels.
${ }^{3}$ Measured at Pin 8 of PDIP (lout), with Pin 9 tied to common.
${ }^{4}$ Error vs. crest factor is specified as additional error for a 200 mV rms rectangular pulse train, pulse width $=200 \mu \mathrm{~s}$.
${ }^{5}$ Input voltages are expressed in V rms.
${ }^{6}$ With $10 \mathrm{k} \Omega$ pull-down resistor from Pin 6 (BUF OUT) to $-\mathrm{V}_{\mathrm{s}}$.
${ }^{7}$ With BUF IN tied to COMMON.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Ratings
Supply Voltage	
\quad Dual Supply	$\pm 16.5 \mathrm{~V}$
\quad Single Supply	24 V
Internal Power Dissipation ${ }^{\prime}$	500 mW
Maximum Input Voltage $^{\text {Storage Temperature Range }}$	$\pm 12 \mathrm{~V}$ PEAK
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60 sec$)$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ESD Rating	$300^{\circ} \mathrm{C}$

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 14-Lead SBDIP Pin Configuration

Figure 3. 10-Pin TO-100 Pin Configuration

Table 3. Pin Function Descriptions-14-Lead SBDIP

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{I}}$	Input Voltage.
2	NC	No Connection.
3	$-\mathrm{V}_{\mathrm{S}}$	Negative Supply Voltage.
4	C_{AV}	Averaging Capacitor.
5	dB	Log (dB) Value of the RMS Output
		Voltage.
6	BUF OUT	Buffer Output.
7	BUF IN	Buffer Input.
8	lout	RMS Output Current.
9	RL	Load Resistor.
10	COM	Common.
$11,12,13$	NC	No Connection.
14	$+\mathrm{V}_{\mathrm{S}}$	Positive Supply Voltage.

Table 4. Pin Function Descriptions-10-Pin TO-100

Pin No.	Mnemonic	Description
1	R$_{L}$	Load Resistor.
2	COM	Common.
3	$+V_{S}$	Positive Supply Voltage.
4	$\mathrm{~V}_{\text {IN }}$	Input Voltage.
5	$-V_{S}$	Negative Supply Voltage.
6	CAV $_{A V}$	Averaging Capacitor.
7	dB	Log (dB) Value of the RMS Output Voltage.
8	BUF OUT	Buffer Output.
9	BUF IN	Buffer Input.
10	lout	RMS Output Current.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ratio of Peak Negative Swing to $-V_{s}$ vs. Rexternal for Several Load Resistances

Figure 5. AD636 Frequency Response

Figure 6. Error vs. Crest Factor

THEORY OF OPERATION

RMS MEASUREMENTS

The AD636 embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straightforward computation of rms. The actual computation performed by the AD636 follows the equation:

$$
V r m s=A v g \times\left[\frac{V_{I N}^{2}}{V r m s}\right]
$$

The AD636 is comprised of four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier (see Figure 7, for a simplified schematic). The input voltage, $\mathrm{V}_{\text {IN }}$, which can be ac or dc, is converted to a unipolar current I1, by the active rectifier A1, A2. I1 drives one input of the squarer/divider, which has the transfer function:

$$
I 4=\frac{I 1^{2}}{I 3}
$$

The output current, I4, of the squarer/divider drives the current mirror through a low-pass filter formed by R1 and the externally connected capacitor, C_{AV}. If the R1, CAV time constant is much greater than the longest period of the input signal, then I4 is effectively averaged. The current mirror returns a current I3, which equals Avg. [I4], back to the squarer/divider to complete the implicit rms computation. Therefore,

$$
I 4=A v g \times\left[\frac{I 2^{2}}{I 4}\right]=I 1 \mathrm{rms}
$$

The current mirror also produces the output current, Iout, which equals 2I4. Iour can be used directly or converted to a voltage with R2 and buffered by A4 to provide a low impedance voltage output. The transfer function of the AD636 thus results

$$
V_{\text {out }}=2 \text { R2 I rms }=V_{\text {IN }} r m s
$$

The $d B$ output is derived from the emitter of Q_{3}, because the voltage at this point is proportional to $-\log \mathrm{V}_{\mathrm{IN}}$. Emitter follower, Q5, buffers and level shifts this voltage, so that the dB output voltage is zero when the externally supplied emitter current ($\mathrm{I}_{\text {REF }}$) to Q5 approximates I3.

THE AD636 BUFFER AMPLIFIER

The buffer amplifier included in the AD636 offers the user additional application flexibility. It is important to understand some of the characteristics of this amplifier to obtain optimum performance. Figure 8 shows a simplified schematic of the buffer.

Because the output of an rms-to-dc converter is always positive, it is not necessary to use a traditional complementary Class $A B$ output stage. In the AD636 buffer, a Class A emitter follower is used instead. In addition to excellent positive output voltage swing, this configuration allows the output to swing fully down to ground in single-supply applications without the problems associated with most IC operational amplifiers.

Figure 8. Buffer Amplifier Simplified Schematic
When this amplifier is used in dual-supply applications as an input buffer amplifier driving a load resistance referred to ground, steps must be taken to ensure an adequate negative voltage swing. For negative outputs, current flows from the load resistor through the $40 \mathrm{k} \Omega$ emitter resistor, setting up a voltage divider between $-\mathrm{V}_{\mathrm{s}}$ and ground. This reduced effective $-\mathrm{V}_{\mathrm{s}}$, limits the available negative output swing of the buffer. The addition of an external resistor in parallel with R_{E} alters this voltage divider such that increased negative swing is possible.

Figure 4 shows the value of Rexternal for a particular ratio of $\mathrm{V}_{\text {PEAK }}$ to $-\mathrm{V}_{\mathrm{S}}$ for several values of $\mathrm{R}_{\text {LOAD }}$. The addition of $\mathrm{R}_{\text {external }}$ increases the quiescent current of the buffer amplifier by an amount equal to $\mathrm{R}_{\mathrm{ExT}} /-\mathrm{V}_{\mathrm{s}}$. Nominal buffer quiescent current with no $R_{\text {External }}$ is $30 \mu \mathrm{~A}$ at $-\mathrm{V}_{\mathrm{s}}=-5 \mathrm{~V}$.

FREQUENCY RESPONSE

The AD636 uses a logarithmic circuit to perform the implicit rms computation. As with any log circuit, bandwidth is proportional to signal level. The solid lines in Figure 5 represent the frequency response of the AD636 at input levels from 1 mV to 1 V rms. The dashed lines indicate the upper frequency limits for 1%, 10%, and $\pm 3 \mathrm{~dB}$ of reading additional error. For example, note that a 1 V rms signal produces less than 1% of reading additional error up to 220 kHz . A 10 mV signal can be measured with 1% of reading additional error $(100 \mu \mathrm{~V})$ up to 14 kHz .

AC MEASUREMENT ACCURACY AND CREST FACTOR (CF)

Crest factor is often overlooked in determining the accuracy of an ac measurement. Crest factor is defined as the ratio of the peak signal amplitude to the rms value of the signal $\left(C F=V_{P} / V\right.$ rms). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (<2). Waveforms that resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of $10(\mathrm{CF}=1 / \sqrt{\eta})$.

Figure 6 is a curve of reading error for the AD636 for a 200 mV rms input signal with crest factors from 1 to 7 . A rectangular pulse train (pulse width $200 \mu \mathrm{~s}$) was used for this test because it is the worst-case waveform for rms measurement (all the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 7 while maintaining a constant 200 mV rms input amplitude.

APPLICATIONS

The input and output signal ranges are a function of the supply voltages as detailed in the specifications. The AD636 can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the $10 \mathrm{k} \Omega$ resistor. The buffer amplifier can then be used for other purposes. Further, the AD636 can be used in a current output mode by disconnecting the $10 \mathrm{k} \Omega$ resistor from the ground. The output current is available at $\operatorname{Pin} 8$ ($\operatorname{Pin} 10$ on the H package) with a nominal scale of $100 \mu \mathrm{~A}$ per volt rms input, positive out.

STANDARD CONNECTION

The AD636 is simple to connect for the majority of high accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection is shown in Figure 9 In this configuration, the AD636 measures the rms of the ac and dc level present at the input but shows an error for low frequency inputs as a function of the filter capacitor, C_{AV}, as shown in Figure 13. Therefore, if a $4 \mu \mathrm{~F}$ capacitor is used, the additional average error at 10 Hz is 0.1%, and at 3 Hz it is 1%. The accuracy at higher frequencies is according to specification. If it is desired to reject the dc input, a capacitor is added in series with the input, as shown in Figure 11; the capacitor must be nonpolar. If the AD636 is driven with power supplies with a considerable amount of high frequency ripple, it is advisable to bypass both supplies to ground with $0.1 \mu \mathrm{~F}$ ceramic discs as near the device as possible. C_{F} is an optional output ripple filter.

Figure 9. Standard RMS Connection

OPTIONAL TRIMS FOR HIGH ACCURACY

If it is desired to improve the accuracy of the AD636, the external trims shown in Figure 10 can be added. R4 is used to trim the offset. The scale factor is trimmed by using R1 as shown. The insertion of R2 allows R1 to either increase or decrease the scale factor by $\pm 1.5 \%$.

The trimming procedure is as follows:

- Ground the input signal, V_{IN}, and adjust R4 to give 0 V output from Pin 6. Alternatively, R4 can be adjusted to give the correct output with the lowest expected value of $\mathrm{V}_{\text {IN }}$.
- Connect the desired full-scale input level to $\mathrm{V}_{\text {IN }}$, either dc or a calibrated ac signal (1 kHz is the optimum frequency); then trim R1 to give the correct output from Pin 6, that is, 200 mV dc input should give 200 mV dc output. Of course, a $\pm 200 \mathrm{mV}$ peak-to-peak sine wave should give a 141.4 mV dc output. The remaining errors, as given in the specifications, are due to the nonlinearity.

NC = NO CONNECT
Figure 10. Optional External Gain and Output Offset Trims

SINGLE-SUPPLY CONNECTION

Although the applications illustrated in Figure 9 and Figure 10 assume the use of dual power supplies, three external bias components connected to the COM pin enable powering the AD636 with unipolar supplies as low as 5 V . The two resistors and capacitor network shown connected to Pin 10 in Figure 11 are satisfactory over the same range of voltages permissible with dual supply operation. Any external bias voltage applied to Pin 10 is internally reflected to the VIN pin, rendering the same ac operation as with a dual supply. DC or ac +dc conversion is impractical, due to the resultant dc level shift at the input. The capacitor insures that no extraneous signals are coupled into the COM pin. The values of the resistors are relatively high to minimize power consumption because only $1 \mu \mathrm{~A}$ of bias current flows into Pin 10 (Pin 2 on the H package).

Alternately, the COM pin of some CMOS ADCs provides a suitable artificial ground for the AD636. AC input coupling requires only Capacitor C2 as shown; a dc return is not necessary because it is provided internally. C 2 is selected for the proper low frequency break point with the input resistance of $6.7 \mathrm{k} \Omega$; for a cut-off at $10 \mathrm{~Hz}, \mathrm{C} 2$ should be $3.3 \mu \mathrm{~F}$. The signal ranges in this connection are
slightly more restricted than in the dual supply connection. The load resistor, R_{L}, is necessary to provide current sinking capability.

NC = NO CONNECT
Figure 11. Single-Supply Connection (See Text)

CHOOSING THE AVERAGING TIME CONSTANT

The AD636 computes the rms of both ac and dc signals. If the input is a slowly varying dc voltage, the output of the AD636 tracks the input exactly. At higher frequencies, the average output of the AD636 approaches the rms value of the input signal. The actual output of the AD636 differs from the ideal output by a dc (or average) error and some amount of ripple, as demonstrated in Figure 12.

Figure 12. Typical Output Waveform for Sinusoidal Input
The dc error is dependent on the input signal frequency and the value of C_{Av}. Figure 13 can be used to determine the minimum value of C_{AV}, which yields a given $\%$ dc error above a given frequency using the standard rms connection.

The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C_{Av}. Because the ripple is inversely proportional to C_{AV}, a tenfold increase in this capacitance effects a tenfold reduction in ripple. When measuring waveforms with high crest factors (such as low duty cycle pulse trains), the averaging time constant should be at least ten times the signal period. For example, a 100 Hz pulse rate requires a 100 ms time constant, which corresponds to a $4 \mu \mathrm{~F}$ capacitor (time constant $=25 \mathrm{~ms}$ per $\mu \mathrm{F}$).

Figure 13. Error/Settling Time Graph for Use with the Standard RMS Connection

The primary disadvantage in using a large Cav to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 13 shows the relationship between $C_{A V}$ and 1% settling time is 115 ms for each microfarad of C_{Av}. The settling time is twice as great for decreasing signals as for increasing signals (the values in Figure 13 are for decreasing signals). Settling time also increases for low signal levels, as shown in Figure 14.

Figure 14. Settling Time vs. Input Level
A better method for reducing output ripple is the use of a postfilter. Figure 15 shows a suggested circuit. If a single-pole filter is used (C 3 removed, R_{x} shorted), and C2 is approximately 5 times the value of C_{AV}, the ripple is reduced, as shown in Figure 16, and the settling time is increased. For example, with $\mathrm{C}_{\mathrm{AV}}=1 \mu \mathrm{~F}$ and $\mathrm{C} 2=4.7 \mu \mathrm{~F}$, the ripple for a 60 Hz input is reduced from 10% of reading to approximately 0.3% of reading. The settling time, however, is increased by approximately a factor of 3. The values of C_{AV} and C 2 can therefore be reduced to permit faster settling times while still providing substantial ripple reduction.

The 2-pole post filter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a 1-pole filter. The values of $\mathrm{C}_{\mathrm{AV}}, \mathrm{C} 2$, and C 3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C_{AV}, because the dc error is dependent upon this value and is independent of the post filter. For a more detailed explanation of these topics, refer to the RMS-to-DC Conversion Application Guide, 2nd Edition.

Figure 16. Performance Features of Various Filter Types

A COMPLETE AC DIGITAL VOLTMETER

Figure 17 shows a design for a complete low power ac digital voltmeter circuit based on the AD636. The $10 \mathrm{M} \Omega$ input attenuator allows full-scale ranges of $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, and 200 V rms. Signals are capacitively coupled to the AD636 buffer amplifier, which is connected in an ac bootstrapped configuration to minimize loading. The buffer then drives the $6.7 \mathrm{k} \Omega$ input impedance of the AD636. The COM terminal of the ADC provides the false ground required by the AD636 for singlesupply operation. An AD589 1.2 V reference diode is used to provide a stable 100 mV reference for the ADC in the linear rms mode; in the dB mode, a 1 N 4148 diode is inserted in series to provide correction for the temperature coefficient of the dB scale factor. Adjust R13 to calibrate the meter for an accurate readout at full scale.

Calibration of the dB range is accomplished by adjusting R9 for the desired 0 dB reference point, and then adjusting R14 for the desired dB scale factor (a scale of 10 counts per dB is convenient).

Total power supply current for this circuit is typically 2.8 mA using a 7106-type ADC.

A LOW POWER, HIGH INPUT, IMPEDANCE dB METER

The portable dB meter circuit combines the functions of the AD636 rms converter, the AD589 voltage reference, and a [] A6IDow power operational amplifier (see Figure 18). This meter offers excellent bandwidth and superior high and low level accuracy while consuming minimal power from a standard 9 V transistor radio battery.

In this circuit, the built-in buffer amplifier of the AD636 is used as a bootstrapped input stage increasing the normal $6.7 \mathrm{k} \Omega$ input Z to an input impedance of approximately $10^{10} \Omega$.

Circuit Description

The input voltage, $\mathrm{V}_{\text {IN }}$, is ac-coupled by C 4 while R 8 , together with D1 and D2, provide high input voltage protection.

The buffer's output, Pin 6, is ac-coupled to the rms converter's input (Pin 1) by capacitor C2. Resistor R9 is connected between the buffer's output, a Class A output stage, and the negative output swing. Resistor R1 is the amplifier's bootstrapping resistor.

With this circuit, single-supply operation is made possible by setting ground at a point between the positive and negative sides of the battery. This is accomplished by sending $250 \mu \mathrm{~A}$ from the positive battery terminal through R2, then through the 1.2 V AD589 band gap reference, and finally back to the negative side of the battery via R10. This sets ground at $1.2 \mathrm{~V}+3.18 \mathrm{~V}$ $(250 \mu \mathrm{~A} \times 12.7 \mathrm{k} \Omega)=4.4 \mathrm{~V}$ below the positive battery terminal and $5.0 \mathrm{~V}(250 \mu \mathrm{~A} \times 20 \mathrm{k} \Omega)$ above the negative battery terminal.
Bypass capacitors, C3 and C5, keep both sides of the battery at a low ac impedance to ground. The AD589 band gap reference establishes the 1.2 V regulated reference voltage, which together with R3 and trimming Potentiometer R4, sets the 0 dB reference current, $\mathrm{I}_{\text {ReF }}$.

Performance Data

0 dB Reference Range $=0 \mathrm{dBm}(770 \mathrm{mV})$ to $-20 \mathrm{dBm}(77 \mathrm{mV}) \mathrm{rms}$ $0 \mathrm{dBm}=1 \mathrm{~mW}$ in 600Ω
Input Range $\left(\right.$ at $\left.\mathrm{I}_{\text {REF }}=770 \mathrm{mV}\right)=50 \mathrm{dBm}$
Input Impedance $=$ approximately 10^{10}
$\mathrm{V}_{\text {SUPPLI }}$ Operating Range $=+5 \mathrm{~V}$ dc to +20 V dc
$\mathrm{I}_{\mathrm{QUIESCENT}}=1.8 \mathrm{~mA}$ typical
Accuracy with 1 kHz sine wave and 9 V dc supply:

$$
\begin{aligned}
& 0 \mathrm{~dB} \text { to }-40 \mathrm{dBm} \pm 0.1 \mathrm{dBm} \\
& 0 \mathrm{dBm} \text { to }-50 \mathrm{dBm} \pm 0.15 \mathrm{dBm} \\
& +10 \mathrm{dBm} \text { to }-50 \mathrm{dBm} \pm 0.5 \mathrm{dBm}
\end{aligned}
$$

Frequency Response $\pm \mathbf{3 d B m}$

Input

$$
\begin{aligned}
& 0 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 380 \mathrm{kHz} \\
& -10 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 370 \mathrm{kHz} \\
& -20 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 240 \mathrm{kHz} \\
& -30 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\
& -40 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 45 \mathrm{kHz} \\
& -50 \mathrm{dBm}=5 \mathrm{~Hz} \text { to } 17 \mathrm{kHz}
\end{aligned}
$$

Calibration

First, calibrate the 0 dB reference level by applying a 1 kHz sine wave from an audio oscillator at the desired 0 dB amplitude.

This can be anywhere from $0 \mathrm{dBm}(770 \mathrm{mV} \mathrm{rms}-2.2 \mathrm{~V} \mathrm{p}-\mathrm{p})$ to $-20 \mathrm{dBm}\left(77 \mathrm{mV} \mathrm{rms}-220 \mathrm{mV}\right.$ p-p). Adjust the $\mathrm{I}_{\text {Ref }}$ calibration trimmer for a zero indication on the analog meter.

Then, calibrate the meter scale factor or gain. Apply an input signal -40 dB below the set 0 dB reference and adjust the scale factor calibration trimmer for a $40 \mu \mathrm{~A}$ reading on the analog meter.

The temperature compensation resistors for this circuit can be purchased from Micro-Ohm Corporation, 1088 Hamilton Rd., Duarte, CA 91010, Part \#Type 401F, $2 \mathrm{k} \Omega, 1 \%+3500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Figure 17. Portable, High-Z Input, RMS DPM and dB Meter Circuit

ALL RESISTORS $1 / 4 \mathrm{~W} 1 \%$ METAL FILM UNLESS OTHERWISE STATED EXCEPT
*WHICH IS $2 \mathrm{k} \Omega+3500 \mathrm{ppm} 1 \%$ TC RESISTOR.
Figure 18. Low Power, High Input Impedance dB Meter

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 19. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP] (D-14)
Dimensions shown in inches and (millimeters)

CONTROL ING DIMENSIONS ARE IN INCHES; MIL LIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 20. 10-Pin Metal Header Package [TO-100]
(H-10)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD636JDZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$14-$ Lead SBDIP	$\mathrm{D}-14$
AD636KDZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$14-$ Lead SBDIP	$\mathrm{D}-14$
AD636JH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10-$ Pin TO-100	$\mathrm{H}-10$
AD636JHZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10-$ Pin TO-100	$\mathrm{H}-10$
AD636KH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10-\operatorname{Pin~TO-100~}$	$\mathrm{H}-10$
AD636KHZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10-\operatorname{Pin~TO-100}$	$\mathrm{H}-10$

[^2]\square
Data Sheet
AD636
NOTES

NOTES

[^0]: Rev. E
 Document Feedback
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1} 10$-Lead TO: $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$.
 14-Lead PDIP: $\theta_{J A}=95^{\circ} \mathrm{C} / \mathrm{W}$.

[^2]: ${ }^{1} Z=$ RoHS-Compliant Part.

