

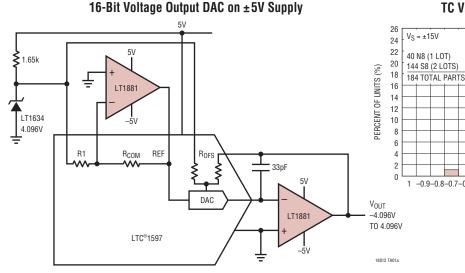
Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps DESCRIPTION

The LT®1881 and LT1882 op amps bring high accuracy input performance to amplifiers with rail-to-rail output swing. Input bias currents and capacitive load driving capabilities are superior to the similar LT1884 and LT1885 amplifiers, at the cost of a slight loss in speed. Input offset voltage is trimmed to less than 50µV and the low drift maintains this accuracy over the operating temperature range. Input bias currents are an ultralow 200pA maximum.

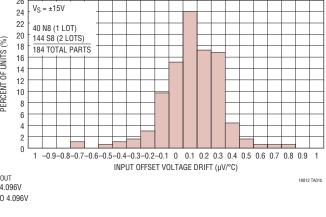
The amplifiers work on any total power supply voltage between 2.7V and 36V (fully specified from 5V to \pm 15V). Output voltage swings to within 40mV of the negative supply and 220mV of the positive supply make these amplifiers good choices for low voltage single supply operation.

Capacitive loads up to 1000pF can be driven directly in unity-gain follower applications.

The dual LT1881 and LT1881A are available with standard pinouts in S8 and PDIP packages. The quad LT1882 is in a 14-pin SO package. For a higher speed device with similar DC specifications, see the LT1884/LT1885.


FEATURES

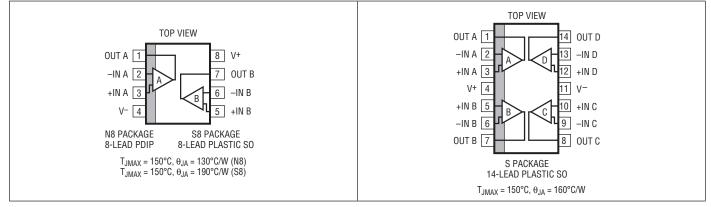
- Offset Voltage: 50µV Maximum (LT1881A)
- Input Bias Current: 200pA Maximum (LT1881A)
- Offset Voltage Drift: 0.8µV/°C Maximum
- Rail-to-Rail Output Swing
- Supply Range: 2.7V to 36V
- Operates with Single or Split Supplies
- Open-Loop Voltage Gain: 1 Million Minimum
- 1mA Maximum Supply Current Per Amplifier
- Stable at A_V = 1, C_L = 1000pF
- Standard Pinouts
- Wide Operating Temperature Range: -55°C to 125°C (LT1882)


APPLICATIONS

- Thermocouple Amplifiers
- Bridge Transducer Conditioners
- Instrumentation Amplifiers
- Battery-Powered Systems
- Photo Current Amplifiers

TYPICAL APPLICATION

TC V_{OS} Distribution, Industrial Grade


LT1881/LT1882

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V ⁺ to V ⁻)	40V
Differential Input Voltage (Note 2)	±10V
Input Voltage	V+ to V-
Input Current (Note 2)	±10mA
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range (Note 4)	
LT1881C/LT1882C	40°C to 85°C
LT1881I/LT1882I	40°C to 85°C
LT1882H4	0°C to 125°C
LT1882MP5	5°C to 125°C

Specified Temperature Range (Note 5)	
LT1881C/LT1882C	40°C to 85°C
LT1881I/LT1882I	40°C to 85°C
LT1882H	40°C to 125°C
LT1882MP	55°C to 125°C
Maximum Junction Temperature	150°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1881CN8#PBF	LT1881CN8#TRPBF	LT1881CN8	8-Lead PDIP	0°C to 70°C
LT1881IN8#PBF	LT1881IN8#TRPBF	LT1881IN8	8-Lead PDIP	-40°C to 85°C
LT1881CS8#PBF	LT1881CS8#TRPBF	1881	8-Lead Plastic SO	0°C to 70°C
LT1881IS8#PBF	LT1881IS8#TRPBF	18811	8-Lead Plastic SO	–40°C to 85°C
LT1881ACN8#PBF	LT1881ACN8#TRPBF	LT1881ACN8	8-Lead PDIP	0°C to 70°C
LT1881AIN8#PBF	LT1881AIN8#TRPBF	LT1881AIN8	8-Lead PDIP	–40°C to 85°C
LT1881ACS8#PBF	LT1881ACS8#TRPBF	1881A	8-Lead Plastic SO	0°C to 70°C
LT1881AIS8#PBF	LT1881AIS8#TRPBF	1881AI	8-Lead Plastic SO	–40°C to 85°C
LT1882CS#PBF	LT1882CS#TRPBF	LT1882CS	14-Lead Plastic SO	0°C to 70°C
LT1882IS#PBF	LT1882IS#TRPBF	LT1882IS	14-Lead Plastic SO	–40°C to 85°C
LT1882HS#PBF	LT1882HS#TRPBF	LT1882HS	14-Lead Plastic SO	-40°C to 125°C
LT1882MPS#PBF	LT1882MPS#TRPBF	LT1882MPS	14-Lead Plastic SO	–55°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C. Single supply operation $V_S = 5V$, 0V; $V_{CM} = V_S/2$ unless otherwise noted. (Note 5)

SYMBOL V _{os}	PARAMETER							1		
V _{OS}		CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
	Input Offset Voltage (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		25	50 85 110				μ\ μ\ μ\
	Input Offset Voltage (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C$ -40°C < $T_A < 85^{\circ}C$ -40°C < $T_A < 125^{\circ}C$ -55°C < $T_A < 125^{\circ}C$	•		30	80 125 150		30	80 300 300	μν μν μν μν
ΔV _{OS} /ΔT	Input Offset Voltage Drift (Note 6)	$\begin{array}{l} 0^{\circ}C < T_A < 70^{\circ}C \\ -40^{\circ}C < T_A < 85^{\circ}C \\ -40^{\circ}C < T_A < 125^{\circ}C \\ -55^{\circ}C < T_A < 125^{\circ}C \end{array}$	•		0.3 0.3	0.8 0.8		0.3 0.3	0.8 0.8	μV/°C μV/°C μV/°C μV/°C
∆V _{OS} / ∆TIME	Long-Term Input Offset Voltage Stability				0.3			0.3		µV/month
I _{OS}	Input Offset Current (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		100	200 250 300				рА рА рА
	Input Offset Current (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C \\ -40^{\circ}C < T_A < 85^{\circ}C \\ -40^{\circ}C < T_A < 125^{\circ}C \\ -55^{\circ}C < 125^{\circ}C \\ -55^{\circ}C < T_A < 125^{\circ}C \\ -55^{\circ}C \\ -55^{\circ}C < T_A < 125^{\circ}C \\ -55^{\circ}C \\ -55$	•		150	500 600 700		150	500 2000 2000	pA pA pA pA
I _B	Input Bias Current (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		100	200 250 300				рА рА рА
	Input Bias Current (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C$ -40°C < $T_A < 85^{\circ}C$ -40°C < $T_A < 125^{\circ}C$ -55°C < $T_A < 125^{\circ}C$	•		150	500 600 700		150	500 3000 3000	pA pA pA pA
	Input Noise Voltage	0.1Hz to 10Hz			0.5			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			14			14		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.03			0.03		pA/√Hz
R _{IN}	Input Resistance	Differential Mode Common Mode	•		20 100			20 100		MΩ GΩ
CIN	Input Capacitance		•		2			2		pF
V _{CM}	Input Voltage Range		•	V ⁻ + 1.0 V ⁻ + 1.2		V+-1.0 V+-1.2	V ⁻ + 1.0 V ⁻ + 1.2		V+-1.0 V+-1.2	V V
CMRR	Common Mode Rejection Ratio	1V < V _{CM} < 4V 1.2V < V _{CM} < 3.8V	•	106 104	128		106 102	128		dB dB
PSRR	Power Supply Rejection Ratio	$\begin{array}{l} V^- = 0V, V_{CM} = 1.5V \\ 0^\circ C < T_A < 85^\circ C, 2.7V < V^+ < 32V \\ 0^\circ C < T_A < 125^\circ C, 2.7V < V^+ < 32V \\ T_A = -40^\circ C, 3V < V^+ < 32V \\ T_A = -55^\circ C, 3V < V^+ < 32V \end{array}$	•	106 106			106 106			dB dB dB dB
	Minimum Operating Supply Voltage		•		2.4	2.7		2.4	2.7	V

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C. Single supply operation $V_S = 5V$, 0V; $V_{CM} = V_S/2$ unless otherwise noted. (Note 5)

				(/I Grade	S	H/			
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
A _{VOL}	Large-Signal Voltage Gain	R _L = 10k; 1V < V _{OUT} < 4V	•	500 350	1600		500 300	1600		V/mV V/mV
		$R_L = 2k; 1V < V_{OUT} < 4V$	•	300 250	800		300 200	800		V/mV V/mV
		R _L = 1k; 1V < V _{OUT} < 4V	•	250 200	400		250 150	400		V/mV V/mV
V _{OL}	Output Voltage Swing Low	No Load I _{SINK} = 100µA I _{SINK} = 1mA I _{SINK} = 5mA	••••		20 25 70 270	40 50 150 600		20 25 70 270	50 60 200 750	mV mV mV mV
V _{OH}	Output Voltage Swing High (Referred to V ⁺)	No Load I _{SINK} = 100µA I _{SINK} = 1mA I _{SINK} = 5mA	•		120 130 180 360	220 230 300 600		120 130 180 360	300 325 450 800	mV mV mV mV
ls	Supply Current Per Amplifier	V _S = 3V, 0V	•	0.45	0.65	0.85 1.2	0.45	0.65	0.85 1.5	mA mA
		V _S = 5V, 0V	•	0.5	0.65	0.9 1.4	0.5	0.65	0.9 1.7	mA mA
		V _S = 12V, 0V	•	0.5	0.70	1.0 1.5	0.5	0.70	1.0 1.8	mA mA
I _{SC}	Short-Circuit Current	V _{OUT} Short to GND V _{OUT} Short to V ⁺	•	15 15	30 30		10 10	30 30		mA mA
GBW	Gain Bandwidth Product	f = 20kHz		0.35	1.0		0.35	1.0		MHz
	Channel Separation	f = 1kHz			120			120		dB
t _S	Settling Time	0.01%, V_{OUT} = 1.5V to 3.5V, A _V = -1, R _L = 2k			30			30		μs
SR+	Slew Rate Positive	A _V = -1	•	0.15 0.12	0.35		0.15 0.1	0.35		V/µs V/µs
SR-	Slew Rate Negative	A _V = -1	•	0.11 0.08	0.18		0.11 0.06	0.18		V/µs V/µs
FPBW	Full-Power Bandwidth	V _{OUT} = 4V _{P-P} (Note 10)	•	8.75 6.35	14		8.75 4.75	14		kHz kHz
ΔV_{OS}	Offset Voltage Match (LT1881A)	(Note 7) $0^{\circ}C < T_A < 70^{\circ}C$ $-40^{\circ}C < T_A < 85^{\circ}C$	•		30	70 125 160				μV μV μV
	Offset Voltage Match (LT1881/LT1882)	$\begin{array}{l} (\text{Note 7}) \\ 0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \\ -55^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \end{array}$	••••		35	125 175 235		35	125 385 385	Ψ μV μV μV μV
	Offset Voltage Match Drift	(Notes 6, 7)			0.4	1.2		0.4	1.2	μV/°C
ΔI_{B} +	Noninverting Bias Current Match (LT1881A)	(Note 7) 0°C < T _A < 70°C -40°C < T _A < 85°C	•		200	300 400 500				рА рА рА

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. Single supply operation $V_S = 5V$, 0V; $V_{CM} = V_S/2$ unless otherwise noted. (Note 5)

				C	/I Grade	es	H/	MP Grad	les	
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
ΔI_{B} +	Noninverting Bias Current Match (LT1881/LT1882)	$ \begin{array}{l} (\text{Note 7}) \\ 0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \\ -55^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \end{array} $	•		250	700 900 1000		250	700 2000 2000	pA pA pA pA
∆CMRR	Common Mode Rejection Ratio Match	(Notes 7, 9)	•	102	125		100	125		dB
∆PSRR	Power Supply Rejection Match (Notes 7, 9)	$\begin{array}{l} V^- = 0V, V_{CM} = 1.5V \\ 0^\circ C < T_A < 85^\circ C, 2.7V < V^+ < 32V \\ 0^\circ C < T_A < 125^\circ C, 2.7V < V^+ < 32V \\ T_A = -40^\circ C, 3V < V^+ < 32V \\ T_A = -55^\circ C, 3V < V^+ < 32V \end{array}$	•	104 104	126 126		102 102	126 126		dB dB dB dB

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Split supply operation V_S = ±15V, V_{CM} = 0V unless otherwise noted. (Note 5)

			(C/I Grade	es	H/	MP Grac	les	
PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Input Offset Voltage (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		25	50 85 110				μV μV μV
Input Offset Voltage (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C$ -40°C < $T_A < 85^{\circ}C$ -40°C < $T_A < 125^{\circ}C$ -55°C < $T_A < 125^{\circ}C$	•		30	80 125 150		30	80 300 300	μV μV μV μV μV
Input Offset Voltage Drift (Note 6)	$\begin{array}{c} 0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \\ -55^{\circ}\text{C} < \text{T}_{\text{A}} < 125^{\circ}\text{C} \end{array}$	•		0.3 0.3	0.8 0.8		0.3 0.3	0.8 0.8	μV/°C μV/°C μV/°C μV/°C
Long-Term Input Offset Voltage Stability				0.3			0.3		µV/month
Input Offset Current (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		100	200 250 300				pA pA pA
Input Offset Current (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C$ -40°C < $T_A < 85^{\circ}C$ -40°C < $T_A < 125^{\circ}C$ -55°C < $T_A < 125^{\circ}C$	•		150	500 600 700		150	500 2000 2000	рА рА рА рА рА
Input Bias Current (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		100	200 250 300				pA pA pA
Input Bias Current (LT1881/LT1882)	$\begin{array}{c} 0^{\circ}C < T_A < 70^{\circ}C \\ -40^{\circ}C < T_A < 85^{\circ}C \\ -40^{\circ}C < T_A < 125^{\circ}C \\ -55^{\circ}C < T_A < 125^{\circ}C \\ \end{array}$	•		150	500 600 700		150	500 3000 3000	рА рА рА рА рА
	Input Offset Voltage (LT1881A) Input Offset Voltage (LT1881/LT1882) Input Offset Voltage Drift (Note 6) Long-Term Input Offset Voltage Stability Input Offset Current (LT1881A) Input Offset Current (LT1881/LT1882) Input Offset Current (LT1881/LT1882) Input Bias Current (LT1881A) Input Bias Current	$\begin{tabular}{ c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c c } \hline PARAMETER & CONDITIONS & MIN \\ \hline Input Offset Voltage (LT1881A) & 0°C < T_A < 70°C & -40°C < T_A < 85°C & \bullet & $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c } \hline PARAMETER & CONDITIONS & MIN $ TYP $ MAX $ MIN $ Input Offset Voltage $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c } \hline PARAMETER & CONDITIONS & MIN TYP MAX & MIN TYP MAX \\ \hline Input Offset Voltage (LT1881A) & 0^{\circ}C < T_A < 70^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & 110 \\ \hline Input Offset Voltage (LT1881/LT1882) & 0^{\circ}C < T_A < 70^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & 125 \\ -40^{\circ}C < T_A < 25^{\circ}C & 150 & 150 \\ -40^{\circ}C < T_A < 125^{\circ}C & 150 & 300 \\ -40^{\circ}C < T_A < 125^{\circ}C & -40^{\circ}C < T_A < 125^{\circ}C & 150 & 300 \\ -55^{\circ}C < T_A < 125^{\circ}C & 0.3 & 0.8 & 0.3 & 0.8 \\ (Note 6) & 0^{\circ}C < T_A < 85^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & 0.3 & 0.8 \\ -40^{\circ}C < T_A < 125^{\circ}C & -55^{\circ}C < T_A < 125^{\circ}C & 0.3 & 0.8 \\ -40^{\circ}C < T_A < 125^{\circ}C & -40^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & 0.3 & 0.8 \\ \hline & 0^{\circ}C < T_A < 70^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & -40^{\circ}C < T_A < 125^{\circ}C & -55^{\circ}C < T_A < 125^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & -40^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & -40^{\circ}C & -40^{\circ}C < T_A < 85^{\circ}C & -40^{\circ}C & -40$

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 5)

						les	H/N			
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
	Input Noise Voltage	0.1Hz to 10Hz			0.5			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			14			14		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.03			0.03		pA/√Hz
R _{IN}	Input Resistance	Differential Mode Common Mode	•		20 100			20 100		MΩ GΩ
CIN	Input Capacitance				2			2		pF
V _{CM}	Input Voltage Range		•	V ⁻ + 1.0 V ⁻ + 1.2			V ⁻ + 1.0 V ⁻ + 1.2		V ⁺ - 1.0 V ⁺ - 1.2	V V
CMRR	Common Mode Rejection Ratio	-13.5V < V _{CM} < 13.5V	•	114	130		110	130		dB
+PSRR	Positive Power Supply Rejection Ratio	V ⁻ = -15V, V _{CM} = 0V; 1.5V < V ⁺ < 18V	•	110	132		108	132		dB
-PSRR	Negative Power Supply Rejection Ratio	$V^+ = 15V, V_{CM} = 0V;$ -1.5V < $V^- < -18V$	•	106	132		104	132		dB
	Minimum Operating Supply Voltage		•		±1.2	±1.35		±1.2	±1.35	V
A _{VOL}	Large-Signal Voltage Gain	R _L = 10k; -13.5V < V _{OUT} < 13.5V	•	1000 700	1600		1000 500	1600		V/mV V/mV
		R _L = 2k; -13.5V < V _{OUT} < 4V	•	175 125	420		175 110	420		V/mV V/mV
		$R_{L} = 1k; 1V < V_{OUT} < 4V$	•	90 65	230		90 7	230		V/mV V/mV
V _{OL}	Output Voltage Swing Low (Referred to V _{EE})	No Load I _{SINK} = 100μA I _{SINK} = 1mA I _{SINK} = 5mA	• • •		20 25 70 270	40 50 150 600		20 25 70 270	50 60 200 750	mV mV mV mV
V _{OH}	Output Voltage Swing High (Referred to V_{CC})	No Load I _{SOURCE} = 100µA I _{SOURCE} = 1mA I _{SOURCE} = 5mA	• • •		120 130 180 360	220 230 300 600		120 130 180 360	300 325 450 800	mV mV mV mV
I _S	Supply Current Per Amplifier	V _S = ±15V	•	0.5	0.85	1.1 1.6	0.5	0.85	1.1 2.0	mA mA
I _{SC}	Short-Circuit Current	V _{OUT} Short to V ⁻	•	20 15	40 40		20 10	40 40		mA mA
		V _{OUT} Short to V ⁺	•	20 15	30 30		20 10	30 30		mA mA
GBW	Gain Bandwidth Product	f = 20kHz		0.4	0.85		0.4	0.85		MHz
	Channel Separation	f = 1kHz			120			120		dB
t _S	Settling Time	0.01%, $V_{OUT} = -5V$ to 5V, $A_V = -1$, $R_L = 2k$			30			30		μs
SR+	Slew Rate Positive	A _V = -1	•	0.21 0.18	0.4		0.21 0.15	0.4		V/µs V/µs
SR-	Slew Rate Negative	$A_V = -1$	•	0.13 0.1	0.20		0.11 0.07	0.20		V/µs V/µs

Downloaded from Arrow.com.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Split supply operation V_S = ±15V, V_{CM} = 0V unless otherwise noted. (Note 5)

				(C/I Grad	es	H/	MP Grad	les	
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
FPBW	Full-Power Bandwidth	V _{OUT} = 28V _{P-P} (Note 10)	•	1.47 1.13	2.25		1.47 0.79	2.25		kHz kHz
ΔV_{0S}	Offset Voltage Match (LT1881A)	(Note 7) $0^{\circ}C < T_A < 70^{\circ}C$ $-40^{\circ}C < T_A < 85^{\circ}C$	•		35	70 125 160				μV μV μV
	Offset Voltage Match (LT1881/LT1882)		•		42	125 175 235		42	125 435 435	μV μV μV μV
	Offset Voltage Match Drift	(Notes 6, 7)			0.4	1.1		0.4	1.1	μV/°C
ΔI_{B} +	Noninverting Bias Current Match (LT1881A)	(Note 7) 0°C < T _A < 70°C -40°C < T _A < 85°C	•		200	300 400 500				рА рА рА
Δl _B +	Noninverting Bias Current Match (LT1881/LT1882)		•		250	700 900 1000		250	700 2000 2000	рА рА рА рА
∆CMRR	Common Mode Rejection Match	(Notes 7, 9)	•	110	125		106	125		dB
∆+PSRR	Positive Power Supply Rejection Ratio Match	$V^{-} = -15V, V_{CM} = 0V,$ 1.5V < V ⁺ < 18V, (Notes 7, 9)	•	108	130		108	130		dB
∆–PSRR	Negative Power Supply Rejection Ratio Match	$V^+ = 15V, V_{CM} = 0V,$ -1.5V < V ⁻ < -18V, (Notes 7, 9)	•	104	130		104	130		dB

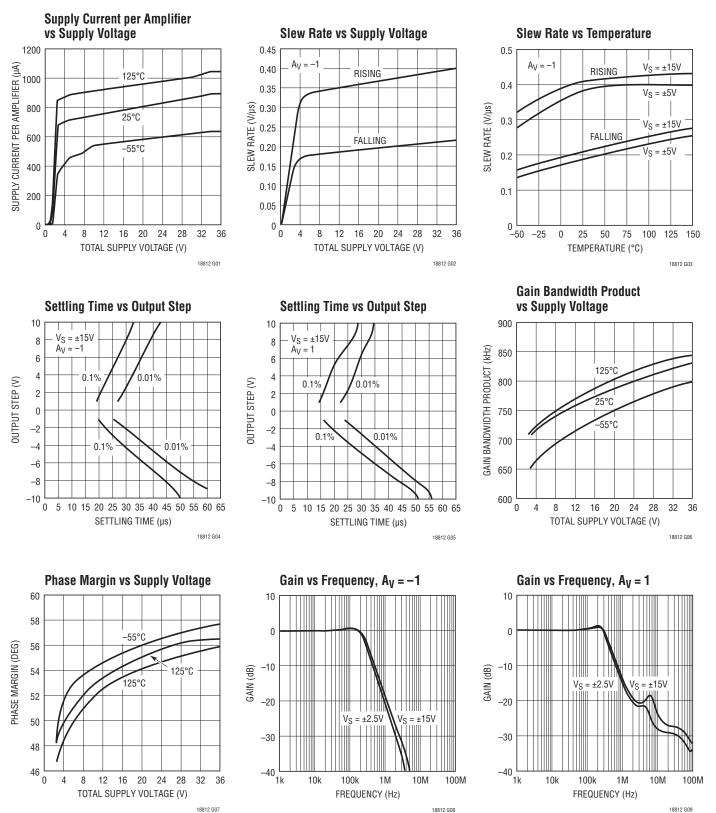
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The inputs are protected by internal resistors and back-to-back diodes. If the differential input voltage exceeds ±0.7V, the input current should be limited externally to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.

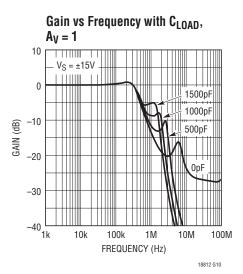
Note 4: The LT1881C/LT1882C and LT1881I/LT1882I are guaranteed functional over the operating temperature range of -40° C to 85° C. The LT1882H is guaranteed functional over the operating temperature range -40°C to 125°C. The LT1882MP is guaranteed functional over the operating temperature range -55°C to 125°C.

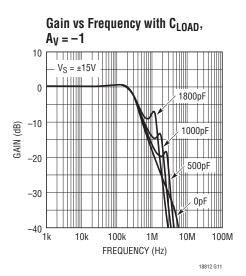
Note 5: The LT1881C/LT1882C are guaranteed to meet specified performance from 0°C to 70°C. The LT1881C/LT1882C are designed. characterized and expected to meet specified performance from -40°C to 85°C but are not tested or QA sampled at these temperatures. The LT1881I/LT1882I are guaranteed to meet specified performance from -40°C to 85°C. The LT1882H is guaranteed to meet specified performance from -40°C to 125°C. The LT1882MP is guaranteed to meet specified performance from -55°C to 125°C.

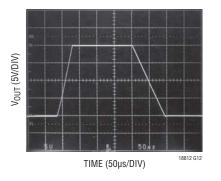

Note 6: This parameter is not 100% tested.

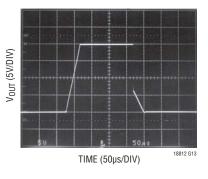
Note 7: Matching parameters are the difference between amplifiers A and B in the LT1881; and between amplifiers A and D and B and C in the LT1882.

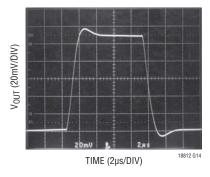
Note 8: This parameter is the difference between the two noninverting input bias currents.

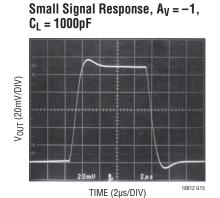

Note 9: \triangle CMRR and \triangle PSRR are defined as follows: CMRR and PSRR are measured in µV/V on each amplifier. The difference is calculated in µV/V and then converted to dB.


Note 10: Full power bandwidth is calculated from the slew rate: FPBW = $SR/2\pi V_{P}$

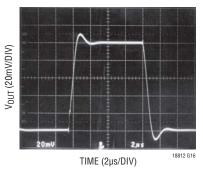




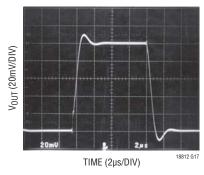

Large Signal Response, $A_V = -1$



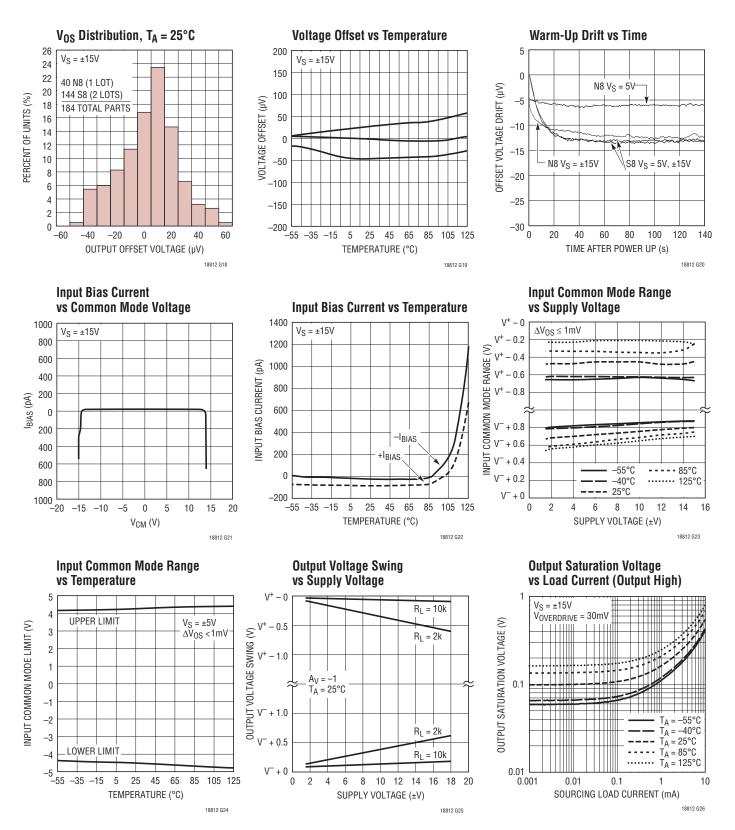
Large Signal Response, $A_V = 1$



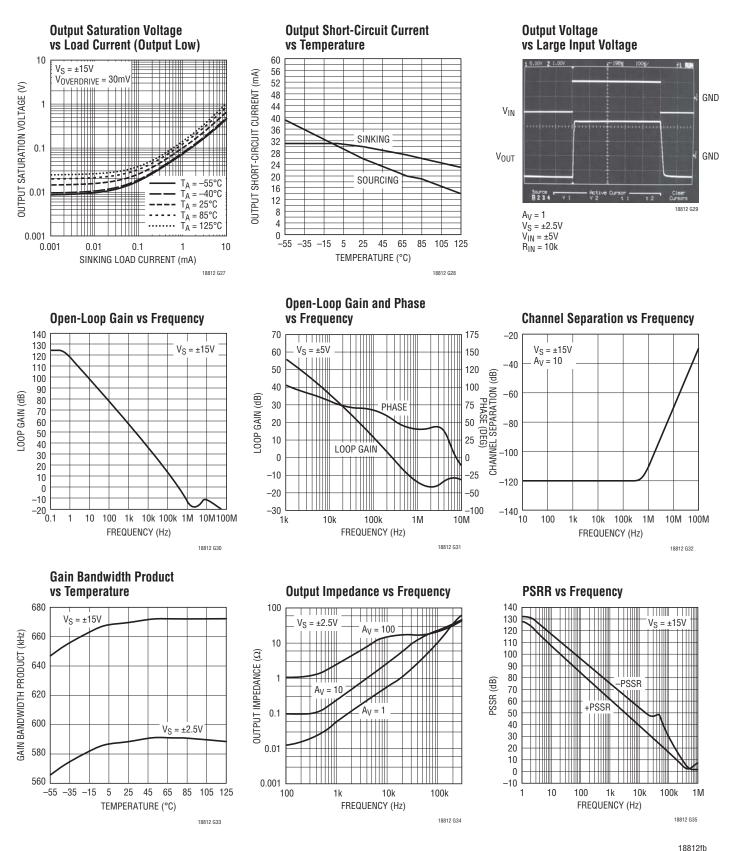
Small Signal Response, $A_V = -1$, No Load



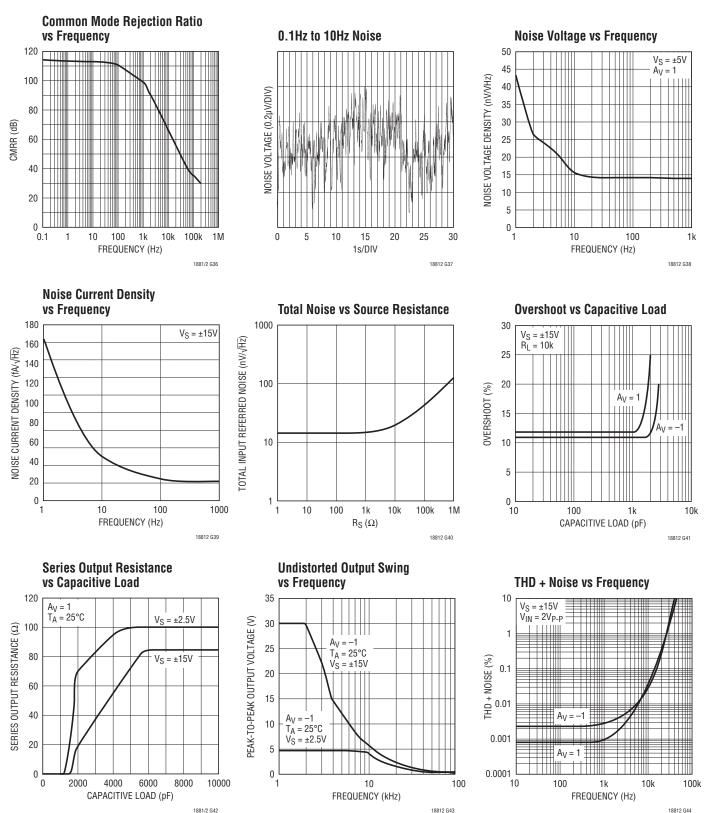
Small Signal Response, $A_V = 1$, $R_L = 2k$



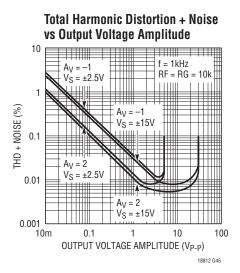
Small Signal Response, A_V = 1, C_L = 500pF

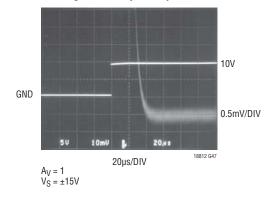

LT1881/LT1882

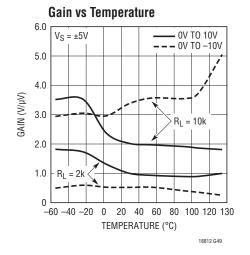
TYPICAL PERFORMANCE CHARACTERISTICS



¹⁸⁸¹²fb

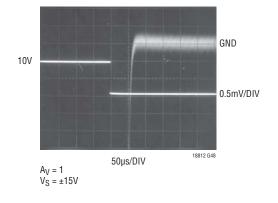

18812 G44

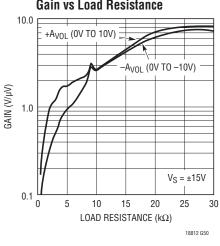



18812 G46

TYPICAL PERFORMANCE CHARACTERISTICS

Settling Time/Output Step 0.01%


Settling Time/Output Step 0.01%


Open-Loop Gain

= 50

OUTPUT VOLTAGE (5V/DIV)

CHANGE IN INPUT OFFSET VOLTAGE (20µV/DIV)

Gain vs Load Resistance

APPLICATIONS INFORMATION

The LT1881 dual and LT1882 quad op amps feature exceptional input precision with rail-to-rail output swing. The amplifiers are similar to the LT1884 and LT1885 devices. The LT1881 and LT1882 offer superior capacitive load driving capabilities over the LT1884 and LT1885 in low voltage gain configurations. Offset voltages are trimmed to less than 50µV and input bias currents are less than 200pA on the "A" grade devices. Obtaining beneficial advantage of these precision input characteristics depends upon proper applications circuit design and board layout.

Preserving Input Precision

Preserving the input voltage accuracy of the LT1881/LT1882 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the 30μ V offset. Temperature differentials across the input connections can generate thermocouple voltages of 10's of microvolts. PC board layouts should keep connections to the amplifier's input pins close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials.

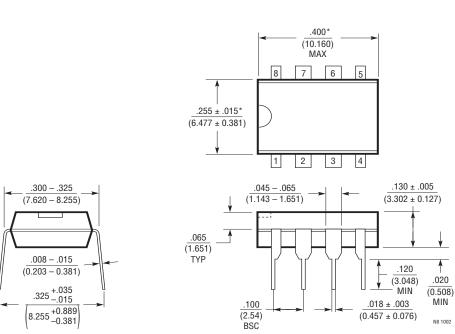
The extremely low input bias currents, 150pA, allow high accuracy to be maintained with high impedance sources and feedback networks. The LT1881/LT1882's low input bias currents are obtained by using a cancellation circuit on-chip. This causes the resulting I_{BIAS} + and I_{BIAS} - to be uncorrelated, as implied by the I_{OS} specification being greater than the I_{BIAS} . The user should not try to balance the input resistances in each input lead, as is commonly recommended with most amplifiers. The impedance at either input should be kept as small as possible to minimize total circuit error.

PC board layout is important to insure that leakage currents do not corrupt the low I_{BIAS} of the amplifier. In high precision, high impedance circuits, the input pins should be surrounded by a guard ring of PC board interconnect, with the guard driven to the same common mode voltage as the amplifier inputs.

Input Common Mode Range

The LT1881 and LT1882 outputs are able to swing nearly to each power supply rail, but the input stage is limited to operating between V⁻ +1V and V⁺ –1V. Exceeding this common mode range will cause the gain to drop to zero; however, no phase reversal will occur.

Input Protection


The inverting and noninverting input pins of the LT1881 and LT1882 have limited on-chip protection. ESD protection is provided to prevent damage during handling. The input transistors have voltage clamping and limiting resistors to protect against input differentials up to 10V. Short transients above this level will also be tolerated. If the input pins can see a sustained differential voltage above 10V, external limiting resistors should be used to prevent damage to the amplifier. A 1k resistor in each input lead will provide protection against a 30V differential voltage.

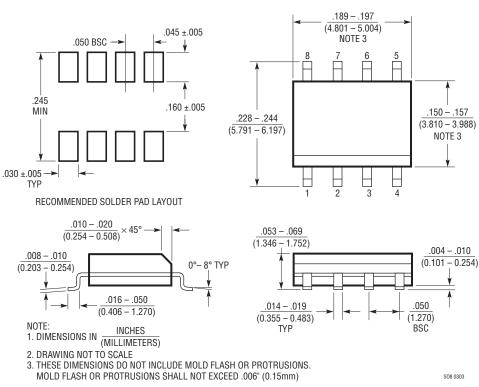
Capacitive Loads

The LT1881 and LT1882 can drive capacitive loads up to 1000pF in unity-gain. The capacitive load driving increases as the amplifier is used in higher gain configurations. Capacitive load driving may be increased by decoupling the capacitance from the output with a small resistance.

PACKAGE DESCRIPTION

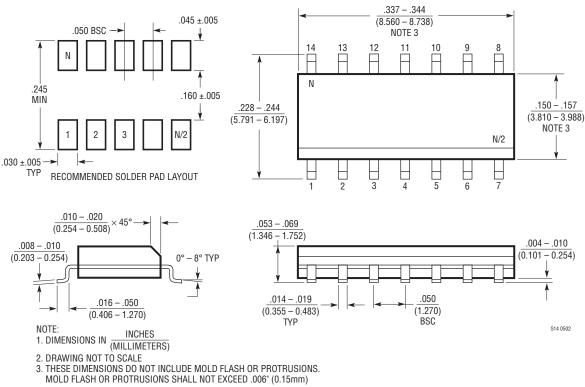
N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)

NOTE:

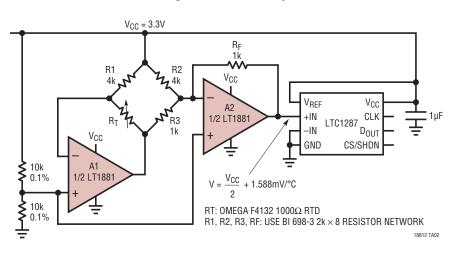

1. DIMENSIONS ARE MILLIMETERS

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

LT1881/LT1882


PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)


PACKAGE DESCRIPTION

S Package 14-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)

TYPICAL APPLICATION

-50°C to 600°C Digital Thermometer Operates on 3.3V

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1112/LT1114	Dual/Quad Picoamp Input Op Amps	V _{OS} = 60µV Max
LT1167	Gain Programmable Instrumentation Amp	Gain Error = 0.08% Max
LT1677	Low Noise, Rail-to-Rail Precision Op Amp	$e_n = 3.2 nV / \sqrt{Hz}$
LT1793	Low Noise JFET Op Amp	I _B = 10pA Max
LT1880	SOT-23 Picoamp Input Precision Op Amp	150 μ V Max V _{0S} , –40°C to 85°C Operation Guaranteed, SOT-23 Package
LT1884/LT1885	Dual/Quad Picoamp Input Op Amps	3 Times Faster than LT1881/LT1882
LTC2050	Zero Drift Op Amp in SOT-23	V _{OS} = 3µV Max, Rail-to-Rail Output
LTC6011/LTC6012	Dual/Quad 135µA Rail-to-Rail Output Precision Op Amps	Lower Power, Available in DFN Package
LTC6081/LTC6082	Dual/Quad Precision CMOS Op Amps	I _B = 1pA Max, V _{OS} = 70µV Max

