feATURES

- 8th Order Filter in a 14-Pin Package
- 95kHz Maximum Corner Frequency
- No External Components
- 75:1, 150:1 and 120:1 Clock to Cutoff Frequency Ratio
- $60 \mu V_{\text {rms }}$ Total Wideband Noise
- 0.03\% THD or Better
- Operates from $\pm 2.37 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ Power Supplies
- Low Total Output DC Offset

APPLICATIONS

- Antialiasing Filters
- Smoothing Filters
- Tracking High Frequency Lowpass Filters

DESCRIPTIOn

The LTC ${ }^{\circledR} 1064-3$ is a monolithic 8 th order lowpass Bessel filter, which provides a linear phase response over its entire passband. An external TTL or CMOS clock programs the filter's cutoff frequency. The clock to cutoff frequency ratio is $75: 1$ (Pin 10 at V^{+}) or 150:1 (Pin 10 at V^{-}) or 120:1 (Pin 10 at GND). The maximum cutoff frequency is 95 kHz . No external components are needed.

The LTC1064-3 features low wideband noise and low harmonic distortion even for input voltages up to $3 \mathrm{~V}_{\text {RMS }}$. In fact the LTC1064-3 overall performance competes with equivalent multiple op amp RC active realizations. The LTC1064-3 is available in a 14-pin DIP or 16-pin surface mounted SOL package. The LTC1064-3 is fabricated using LTC's enhanced analog CMOS Si-gate process.

The LTC1064-3 is pin compatible with the LTC1064-1, LTC1064-2 and LTC1064-4.

[^0]
TYPICAL APPLICATION

NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A $0.1 \mu \mathrm{~F}$ OR LARGER CAPACITOR CLOSE TO THE PACKAGE. THE CONNECTION BETWEEN PIN 7 AND PIN 14 SHOULD BE MADE UNDER THE IC PACKAGE

1064-3 TA01b

Total Supply Voltage (V^{+}to V^{-}) \qquad
Power Dissipation ... 400mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

Operating Temperature Range LTC1064-3M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ LTC1064-3C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Voltage
\qquad $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left.\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
Burn-In Voltage 15 V

PACKAGE/ORDER InFORmATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, 75: 1, \mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \mathrm{R1}=10 \mathrm{k}$, TTL or CMOS clock input level unless otherwise specified.| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Passband Gain | Referenced to $0 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 1 kHz | - | -0.5 | | 0.15 | dB |
| Gain TempCo | | | | 0.0002 | | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| -3dB Frequency | 50:1 ($\mathrm{f}_{\text {CLK }} / \mathrm{f}_{-3 \mathrm{~dB}}=75$) | | | 26.67 | | kHz |
| | 100:1 ($\mathrm{f}_{\text {CLK }} / \mathrm{f}_{-3 \mathrm{~dB}}=150$) | | | 13.34 | | kHz |
| Gain at -3dB Frequency | Referenced to OdB, $\mathrm{f}_{\mathrm{IN}}=26.67 / 13.34 \mathrm{kHz}$ | - | -3.8 | | -2.75 | dB |
| Stopband Attenuation | At 3f-3dB | - | -25 | -29 | | dB |
| Stopband Attenuation | At $5 \mathrm{f}_{-3 \mathrm{~dB}}$ | \bullet | -56 | -60 | | dB |
| Stopband Attenuation | At $7 \mathrm{f}_{-3 \mathrm{~dB}}$ | | | -84 | | dB |
| Input Frequency Range | $\begin{aligned} & \hline 100: 1 \\ & 50: 1 \end{aligned}$ | | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | | $\begin{aligned} & \hline<f_{\text {CLK } / 2} / 2 \\ & <f_{\text {CLK }} \end{aligned}$ | kHz kHz |
| Output Voltage Swing and | $V_{S}= \pm 2.37 \mathrm{~V}$ | \bullet | ± 1.1 | | | V |
| Operating Input Voltage Range | $V_{S}= \pm 5 \mathrm{~V}$ | - | ± 3.1 | | | V |
| | $\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$ | - | ± 5 | | | V |
| Total Harmonic Distortion | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$, Input $=1 \mathrm{~V}_{\text {RMS }}$ at 1 kHz | | | 0.015 | | \% |
| | $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \text {, Input }=3 \mathrm{~V}_{\text {RMS }} \text { at } 1 \mathrm{kHz}$ | | | 0.03 | | \% |
| Wideband Noise | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$, Input $=$ GND $1 \mathrm{~Hz}-1.99 \mathrm{MHz}$ | | | 55 | | $\mu V_{\text {RMS }}$ |
| | $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$, Input $=\mathrm{GND} 1 \mathrm{~Hz}-1.99 \mathrm{MHz}$ | | | 60 | | $\mu V_{\text {RMS }}$ |

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 7.5 \mathrm{~V}, 75: 1, \mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \mathrm{R1}=10 \mathrm{k}$, TTL or CMOS clock input level unless otherwise specified.| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output DC Offset Output DC Offset TempCo | $\begin{aligned} & V_{S}= \pm 7.5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}= \pm 7.5 \mathrm{~V} \\ & \hline \end{aligned}$ | | | $\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 50 \\ & \hline \end{aligned}$ | ± 150 | |
| Input Impedance | | | 14 | 22 | | $\mathrm{k} \Omega$ |
| Output Impedance | $\mathrm{f}_{\text {Out }}=10 \mathrm{kHz}$ | | | 2 | | Ω |
| Output Short-Circuit Current | Source/Sink | | | 3/1 | | mA |
| Clock Feedthrough | | | | 200 | | $\mu \mathrm{V}_{\text {RMS }}$ |
| Maximum Clock Frequency | $\begin{aligned} & \mathrm{V}_{\mathrm{S}} \geq \pm 7 \mathrm{~V}, 50 \% \text { Duty Cycle } \\ & \mathrm{V}_{\mathrm{S}} \geq \pm 7 \mathrm{~V}, 50 \% \text { Duty Cycle, } \mathrm{T}_{\mathrm{A}}=<55^{\circ} \mathrm{C} \end{aligned}$ | | | | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| Power Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.37 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz} \end{aligned}$ | | | $\begin{aligned} & 10 \\ & 12 \\ & 16 \end{aligned}$ | $\begin{aligned} & 22 \\ & 23 \\ & 26 \\ & 28 \\ & 32 \end{aligned}$ | mA mA mA mA mA |
| Power Supply Voltage Range | | \bullet | ± 2.37 | | ± 8 | V |

Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.

TYPICAL PGRFORMARCG CHARACTERISTICS

1064 G01

TYPICAL PGRFORMARCE CHARACTERISTICS

Phase Matching

Total Harmonic Distortion

Power Supply Current vs Power Supply Voltage

Transient Response
Input 10Vp.p Square Wave
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$, Pin 10 to V^{+},
$\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{MHz}$

TYPICAL PGRFORMANCG CHARACTERISTICS

Table 2. Gain/Phase, $\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{kHz}$, LTC1064-3 Typical Response $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {CLK }}=75 \mathrm{kHz}$, Pin 10 at V^{+}(filt 75:1)

FREQUENCY (kHz)	GAIN (dB)	PHASE (deg)
0.500	-0.858	-90.430
1.000	-2.990	179.200
1.500	-6.840	89.600
2.000	-12.780	3.800
2.500	-20.800	-71.000
3.000	-29.900	-129.600
3.500	-38.800	-173.700
4.000	-47.100	152.600
4.500	-54.700	126.000
5.000	-61.600	103.300
5.500	-68.000	85.190
6.000	-73.840	69.060
6.500	-79.250	54.780
7.000	-84.230	42.440
7.500	-88.940	30.060
8.000	-93.360	21.300
8.500	-97.510	10.000
9.000	-100.880	1.520
9.500	-105.780	-7.820

Table 4. Gain/Phase, $\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{kHz}$, LTC1064-3 Typical Response $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=150 \mathrm{kHz}$, Pin 10 at V^{-}(fitr 150:1)

FREQUENCY (kHz)	GAIN (dB)	PHASE (deg)
0.500	-0.955	-88.100
1.000	-3.380	-175.300
1.500	-7.570	99.700
2.000	-13.770	20.100
2.500	-21.800	-48.000
3.000	-30.700	-100.700
3.500	-39.400	-139.900
4.000	-47.600	-169.200
4.500	-55.100	168.300
5.000	-61.900	150.300
5.500	-68.260	135.830
6.000	-74.050	123.660
6.500	-79.450	113.440
7.000	-84.330	104.440
7.500	-89.010	97.670
8.000	-93.250	91.580
8.500	-97.340	84.670
9.000	-101.390	74.600
9.500	-104.980	75.990

Table 3. Gain/Delay, $\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{kHz}$, LTC1064-3 Typical Response $V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {CLK }}=75 \mathrm{kHz}$, Pin 10 at V^{+}(filt 75:1)

FREQUENCY (kHz)	GAIN (dB)	DELAY (ms)
0.200	-0.281	0.502
0.300	-0.420	0.503
0.400	-0.610	0.503
0.500	-0.860	0.502
0.600	-1.160	0.502
0.700	-1.530	0.502
0.800	-1.950	0.503
0.900	-2.430	0.503
1.000	-2.990	0.500
1.100	-3.610	0.500
1.200	-4.300	0.500
1.300	-5.060	0.498
1.400	-5.920	0.495
1.500	-6.830	0.491
1.600	-7.840	0.489
1.700	-8.930	0.481
1.800	-10.130	0.473
1.900	-11.410	0.465
2.000	-12.780	0.454

Table 5. Gain/Delay, fi-3dB $=1 \mathrm{kHz}$, LTC1064-3 Typical Response $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=150 \mathrm{kHz}$, Pin 10 at V^{-}(fitr 150:1)

FREQUENCY	GAIN (dB)	DELAY (ms)
0.200	-0.284	0.490
0.300	-0.450	0.489
0.400	-0.670	0.489
0.500	-0.960	0.487
0.600	-1.310	0.487
0.700	-1.730	0.485
0.800	-2.210	0.484
0.900	-2.750	0.482
1.000	-3.380	0.478
1.100	-4.070	0.478
1.200	-4.820	0.475
1.300	-5.660	0.470
1.400	-6.580	0.467
1.500	-7.570	0.463
1.600	-8.640	0.456
1.700	-9.790	0.448
1.800	-11.050	0.438
1.900	-12.360	0.428
2.000	-13.770	0.417
		10643 fa

TYPICAL PGRFORMANCE CHARACTERISTICS

Table 6. Gain/Phase, $\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{kHz}$, LTC1064-3 Typical Response $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, Pin 10 at GND (fltr 120:1)

FREQUENCY (kHz)	GAIN (dB)	PHASE (deg)
0.500	-0.994 d	-82.210
1.000	-3.050	-162.800
1.500	-6.520	116.700
2.000	-12.180	40.200
2.500	-19.460	-23.600
3.000	-27.200	-74.000
3.500	-34.700	-114.200
4.000	-41.900	-146.800
4.500	-48.700	-173.300
5.000	-55.100	164.700
5.500	-60.900	145.800
6.000	-66.500	130.610
6.500	-71.660	117.130
7.000	-76.390	105.880
7.500	-80.910	96.140
8.000	-84.900	87.510
8.500	-88.750	81.380
9.000	-92.410	78.190
9.500	-98.290	52.860

Table 7. Gain/Delay, $\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{kHz}$, LTC1064-3 Typical Response $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, Pin 10 at GND (fltr 120:1)

FREQUENCY (kHz)	GAIN (dB)	DELAY (ms)
0.200	-0.354	0.458
0.300	-0.520	0.456
0.400	-0.730	0.454
0.500	-1.000	0.452
0.600	-1.320	0.449
0.700	-1.670	0.448
0.800	-2.090	0.446
0.900	-2.540	0.446
1.000	-3.050	0.445
1.100	-3.600	0.446
1.200	-4.220	0.449
1.300	-4.900	0.448
1.400	-5.670	0.447
1.500	-6.520	0.446
1.600	-7.470	0.441
1.700	-8.500	0.432
1.800	-9.650	0.422
1.900	-10.870	0.409
2.000	-12.180	0.395

Table 8. Gain/Phase, $\mathrm{f}_{-3 \mathrm{~dB}}=20 \mathrm{kHz}$, LTC1064-3 Typical
Response $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$, $\mathrm{f}_{\text {CLK }}=1.5 \mathrm{MHz}$, Pin 10 at $\mathrm{V}^{+}(\mathrm{fltr} 75: 1)$

$\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$		
FREQUENCY (kHz)	GAIN (dB)	PHASE (deg)
10.000	-0.912	-92.270
20.000	-3.090	176.000
30.000	-6.910	85.500
40.000	-12.710	-1.200
50.000	-20.500	-77.800
60.000	-29.400	-138.700
70.000	-38.300	174.600
80.000	-46.500	138.300
90.000	-54.000	109.100
100.000	-61.000	84.800
110.000	-67.310	64.040
120.000	-73.170	46.260
130.000	-78.600	31.120
140.000	-83.760	18.050
150.000	-88.630	7.770

$\mathrm{T}_{\mathrm{A}}=\mathbf{1 2 5 ^ { \circ } \mathrm { C }}$		
FREQUENCY (kHz)	GAIN (dB)	PHASE (deg)
10.000	-0.944	-92.880
20.000	-3.170	175.500
30.000	-6.910	85.700
40.000	-12.450	-0.600
50.000	-19.920	-78.000
60.000	-28.500	-140.700
70.000	-37.200	170.500
80.000	-45.300	132.200
90.000	-52.700	100.900
100.000	-59.600	74.900
110.000	-65.900	52.600
120.000	-71.750	32.850
130.000	-77.170	15.840
140.000	-82.370	1.130
150.000	-87.400	-11.380

PIП FUПCTIOnS (Pin Numbers Refer to the 14-Pin Package)

NC (Pins 1, 6, 8 and 13): The "no connection" pins should be preferably grounded. These pins are not internally connected.
$\mathbf{V}_{\text {IN }}, V_{\text {OUT }}($ Pins 2, 9$)$: The input Pin 2 is connected to an 18 k resistor tied to the inverting input of an op amp. Pin 2 is protected against static discharge. The device's output, Pin 9, is the output of an op amp which can typically source/sink $3 \mathrm{~mA} / 1 \mathrm{~mA}$. Although the internal op amps are unity gain stable, driving long coax cables is not recommended.

When testing the device for noise and distortion, the output, Pin 9, should be buffered (Figure 1). The op amp power supply wire (or trace) should be connected directly to the power source. To eliminate switching transients from filter output, buffer filter output with a third order lowpass (see Figure 5).

AGND (Pins 3, 5): For dual supply operation these pins should be connected to a ground plane. For single supply operation both pins should be tied to one half supply (Figure 3).
$\mathbf{V}^{+}, \mathbf{V}^{-}$(Pins 4, 12): Should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to an adequate analog ground. Low noise, nonswitching power supplies are recommended. Toavoid latchup when the power supplies exhibit high turn-on transients, a 1N5817 Schottky diode should be added from the V^{+}and V^{-}pins to ground (Figure 1, 2 and 3).

R IN A, OUT C (Pins 7, 14): A very short connection between Pin 7 and Pin 14 is recommended. This connection should be preferably done under the IC package. In a breadboard, use a one inch, or less, shielded coaxial cable: the shield should be grounded. In a PC board, use a one inch trace or less; surround the trace by a ground plane.

50/100 (Pin 10): Ratio Pin.The DC level at this pin determines the ratio of clock frequency to the -3 dB frequency of the filter. The ratio is $75: 1$ when Pin 10 is at $\mathrm{V}^{+}, 120: 1$ when Pin 10 is at GND and $150: 1$ when Pin 10 is at V^{-}. This pin should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to analog ground when it's connected to V^{-}or V^{+}(Figure 1). See Tables 2 through 8 for typical gain and delay responses for the three ratios.
$\mathrm{f}_{\mathrm{CLK}}$ (Pin 11): For $\pm 5 \mathrm{~V}$ supplies the logic threshold level is 1.4 V . For $\pm 8 \mathrm{~V}$ and 0 V to 5 V supplies the logic threshold levels are 2.2 V and 3 V respectively. The logic threshold levels vary $\pm 100 \mathrm{mV}$ over the full military temperature range. The recommended duty cycle of the input clock is 50% although for clock frequencies below 500 kHz the clock "on" time can be as low as 200ns. The maximum clock frequency for $\pm 5 \mathrm{~V}$ supplies is 4 MHz . For $\pm 7 \mathrm{~V}$ supplies and above, the maximum clock frequency is 7 MHz . Do not allow the clock levels to exceed the power supplies. For single supply operation $\geq 6 \mathrm{~V}$ use level shifting at Pin 11 with T^{2} L levels (see Figure 4).

TYPICAL APPLICATIONS

Figure 1. Buffering the Filter Output. The Buffer Op Amp Should Not Share the LTC1064-3 Power Lines

Figure 2. Using Schottky Diodes to Protect the IC from Power Supply Reversal

Figure 3. Single Supply Operation. If Fast Power Up or Down Transients are Expected, Use a 1N5817 Schottky Diode Between Pin 4 and Pin 5

Figure 4. Level Shifting the Input T^{2} L Clock for Single Supply Operation $\geq 6 \mathrm{~V}$

Figure 5. Adding an Output Buffer-Filter to Eliminate Any Clock Feedthrough. Passband $\pm 0.1 \mathrm{~dB}$ to $50 \mathrm{kHz},-3 \mathrm{~dB}$ at 94 kHz

PACKAGE DESCRIPTION

J Package
14-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

SW Package

16-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.

THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

TYPICAL APPLICATIONS

Amplitude Response

Figure 6. Dual 4th Order Bessel Filters. $\mathbf{V}_{\mathbf{S}}= \pm 7.5 \mathrm{~V}$, $f_{\text {CLK }}=1 \mathrm{MHz}$, Pin 10 to GND . $\mathrm{f}_{-3 \mathrm{~dB}}=9 \mathrm{kHz}$ and 18 kHz

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1069-7	8th Order Linear Phase Lowpass	S0-8 Package
LTC1563	Active RC, 4th Order Bessel Lowpass	Continuous Time, Resistor Programmable Cutoff
LTC1569-6	DC Accurate, 10th Order Lowpass	Linear Phase, Internal Precision Clock, S0-8 Package
LTC1569-7	DC Accurate, 10th Order Lowpass	Linear Phase, Internal Precision Clock, S0-8 Package

[^0]: $\mathbf{\Sigma} \boldsymbol{7}$, LTC and LT are registered trademarks of Linear Technology Corporation.

