FEATURES
Low Power: 315 mW @ 40 MSPS, 345 mW @ 60 MSPS
On-Chip T/H, Reference
Single +5 V Power Supply Operation
Selectable 5 V or 3 V Logic I/ O
SNR: 53 dB Minimum at 10 MHz w/ 40 MSPS

APPLICATIONS
 Medical Imaging
 Instrumentation
 Digital Communications
 Professional Video

PRODUCT DESCRIPTION

T he AD 9050 is a complete 10 -bit monolithic sampling analog-to-digital converter (ADC) with an onboard track-and-hold and reference. The unit is designed for low cost, high performance applications and requires only +5 V and an encode clock to achieve 40 M SPS or 60 M SPS sample rates with 10-bit resolution.
T he encode clock is T T L compatible and the digital outputs are CM OS; both can operate with $5 \mathrm{~V} / 3 \mathrm{~V}$ logic, selected by the user. T he two-step architecture used in the AD 9050 is optimized to provide the best dynamic performance available while maintaining low power consumption.
A 2.5 V reference is included onboard, or the user can provide an external reference voltage for gain control or matching of multiple devices. Fabricated on an advanced BiCM OS process, the AD 9050 is packaged in space saving surface mount packages (SOIC, SSOP) and is specified over the industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range. T he 60 M SPS version (AD 9050BRS-60) is only available in the SSOP package.

REV. B

[^0]FUNCTIONAL BLOCK DIAGRAM

Figure 1. Typical Connections

AD9050- SPECIFICATIONS

ELECTRICAL CHARACTERIST|CS $\begin{aligned} & \left(V_{D}, V_{D D}=+5 \mathrm{~V} \text {; internal reference; ENCODE }=40 \mathrm{MSPS} \text { for BR/BRS, } 60 \text { MSPS for BRS- } 60\right. \\ & \text { unless otherise noted) }\end{aligned}$

Parameter	Temp	Test Level	AD9050BR/BRS			AD9050BRS-60			Units
			Min	Typ	Max	Min	Typ	Max	
RESOLUTION				10			10		Bits
DC ACCURACY Differential N onlinearity Integral N onlinearity No M issing Codes G ain Error G ain Tempco ${ }^{1}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { V } \\ & \text { I } \\ & \text { V } \\ & \text { IV } \\ & \text { I } \\ & \text { V } \end{aligned}$		$\begin{gathered} 0.75 \\ 1.0 \\ 1.0 \\ 1.25 \\ \text { GUARA } \\ \pm 1.0 \\ \pm 100 \end{gathered}$	$\begin{gathered} 1.75 \\ 1.75 \\ \text { TEED } \\ 7.5 \end{gathered}$		$\begin{gathered} 0.85 \\ 1.1 \\ 1.25 \\ 1.50 \\ \text { GUARA } \\ \pm 1.0 \\ \pm 100 \end{gathered}$	1.85 2.0 TEED 8.5	LSB LSB LSB LSB \% FS $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ANALOG INPUT Input Voltage Range Input Offset Voltage Input Resistance Input C apacitance Analog B andwidth	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { I } \\ & \text { IV } \\ & \text { I } \\ & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & -10 \\ & -32 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.024 \\ & +7 \\ & 5.0 \\ & 5 \\ & 100 \end{aligned}$	$\begin{aligned} & +25 \\ & +51 \\ & 6.5 \end{aligned}$	$\begin{aligned} & -10 \\ & -32 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.024 \\ & +7 \\ & 5.0 \\ & 5 \\ & 100 \end{aligned}$	$\begin{aligned} & +25 \\ & +51 \\ & 6.5 \end{aligned}$	V p-p mV mV $k \Omega$ pF M Hz
BANDGAP REFERENCE Output Voltage Temperature C oefficient ${ }^{1}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { V } \end{aligned}$	2.4	$\begin{aligned} & 2.5 \\ & \pm 50 \end{aligned}$	2.6	2.4	$\begin{aligned} & 2.5 \\ & \pm 50 \end{aligned}$	2.6	V $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
SWITCHING PERFORMANCE Maximum Conversion Rate M inimum Conversion Rate A perture D elay (t_{A}) A perture U ncertainty (Jitter) Output Propagation Delay ($\left.\mathrm{t}_{\text {pD }}\right)^{2}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & \text { aull } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { IV } \\ & \text { V } \\ & \text { V } \\ & \text { IV } \end{aligned}$	40 5	$\begin{aligned} & 1.5 \\ & 2.7 \\ & 5 \end{aligned}$	3 15	60 5	$\begin{aligned} & 1.5 \\ & 2.7 \\ & 5 \end{aligned}$	3 15	M SPS M SPS ns ps, rms ns
DYNAMIC PERFORMANCE Transient Response O vervoltage Recovery T ime ENOBS $\begin{aligned} & \mathrm{f}_{I N}=2.3 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{M} \mathrm{~Hz} \end{aligned}$ Signal-to-N oise R atio (SIN AD) ${ }^{3}$ $\begin{aligned} & f_{I N}=2.3 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{M} \mathrm{~Hz} \end{aligned}$ Signal-to-N oise Ratio (W ithout H armonics) $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=2.3 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{M} \mathrm{~Hz} \end{aligned}$ 2nd Harmonic Distortion $\begin{aligned} & f_{I N}=2.3 \mathrm{M} \mathrm{~Hz} \\ & f_{I N}=10.3 \mathrm{M} \mathrm{~Hz} \end{aligned}$ 3rd H armonic Distortion $f_{I N}=2.3 \mathrm{M} \mathrm{~Hz}$ $\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{M} \mathrm{~Hz}$ T wo-T one Intermodulation Distortion (IM D) ${ }^{4}$ Differential Phase Differential Gain	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{I} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{I} \end{aligned}$	8.51 53 53.5	$\begin{aligned} & 10 \\ & 10 \\ & 8.93 \\ & 8.85 \\ & \\ & 55.5 \\ & 55 \\ & \\ & 56 \\ & 55.5 \\ & \\ & -69 \\ & -67 \\ & \\ & -75 \\ & -70 \\ & \\ & 65 \\ & 0.15 \\ & 0.25 \end{aligned}$	-60 -58	8.15 51 51.5	$\begin{aligned} & 10 \\ & 10 \\ & 8.93 \\ & 8.51 \\ & \\ & 55.5 \\ & 53 \\ & \\ & 56 \\ & 54.0 \\ & \\ & -69 \\ & -64 \\ & -75 \\ & -62 \\ & \\ & 65 \\ & 0.15 \\ & 0.25 \end{aligned}$	-58.5 -57.5	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ENOBs } \\ & \text { ENOBs } \\ & \text { dB } \\ & d B \\ & \\ & d B \\ & d B \\ & d B c \\ & D \text { degrees } \\ & \% \end{aligned}$

Parameter	Temp	Test Level	AD9050BR/BRS			AD9050BRS-60			Units
			Min	Typ	Max	Min	Typ	Max	
ENCODEINPUT									
Logic "1" Voltage	Full	IV	2.0			2.0			v
Logic " 0 " Voltage	Full	IV			0.8			0.8	V
Logic "1" C urrent	Full	IV			1			1	$\mu \mathrm{A}$
Logic " 0 " C urrent	Full	IV			1			1	$\mu \mathrm{A}$
Input Capacitance	$+25^{\circ} \mathrm{C}$	V		10			10		pF
Encode Pulse Width High (E_{EH})	$+25^{\circ} \mathrm{C}$	IV	10		166	6.7		166	ns
Encode Pulse Width Low (teL)	$+25^{\circ} \mathrm{C}$	IV	10		166	6.7		166	ns
DIGITAL OUTPUTS									
Logic "1" Voltage	Full	IV	4.95			4.95			V
Logic "0" Voltage	Full	IV			0.05			0.05	V
Logic " 1 " Voltage ($3.0 \mathrm{~V}_{\text {DD }}$)	Full	IV	2.95			2.95			V
Logic " 0 " Voltage ($3.0 \mathrm{~V}_{\text {DD }}$)	Full	IV			0.05			0.05	V
Output Coding			Offset	Binary	Code	Offset	Binary	Code	
POWER SUPPLY									
$\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DD}}$ Supply Current ${ }^{5}$	Full	IV	40	63	80	40		87.2	mA
Power Dissipation ${ }^{5}$	Full	IV		315	400		345	486	mW
Power Supply Rejection Ratio (PSRR) ${ }^{6}$	$+25^{\circ} \mathrm{C}$	।			± 10			± 10	mV/V

NOTES

${ }^{1 "}$ G ain Tempco" is for converter only; "T emperature C oefficient" is for bandgap reference only.
${ }^{2}$ O utput propagation delay ($t_{\text {PD }}$) is measured from the 50% point of the rising edge of the encode command to the midpoint of the digital outputs with 10 pF maximum loads.
${ }^{3}$ RM S signal to rms noise with analog input signal 0.5 dB below full scale at specified frequency for $B R / B R S, 1.0 \mathrm{~dB}$ below full scale for BRS-60.
${ }^{4}$ Intermodulation measured relative to either tone with analog input frequencies of 9.5 M Hz and 9.9 M Hz at 7 dB below full scale.
${ }^{5}$ Power dissipation is measured at full update rate with AIN of 10.3 M Hz and digital outputs loaded with 10 pF maximum. See Figure 4 for power dissipation at other conditions.
${ }^{6} \mathrm{M}$ easured as the ratio of the change in offset voltage for 5% change in $+\mathrm{V}_{\mathrm{D}}$.
Specifications subject to change without notice.

EXPLANATION OF TEST LEVELS

Test Level

I - 100\% Production T ested.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.

ABSOLUTE MAXIMUM RATINGS*

$V_{D}, V_{D D}$
ANALOG IN -1.0 V to $\mathrm{V}_{\mathrm{D}}+1.0 \mathrm{~V}$
Digital Inputs . -0.5 V to V_{D}
V REF Input -0.5 V to V_{D}
Digital Output Current . 20 mA
O perating Temperature

$$
\text { AD 9050BR/BRS/BRS-60 }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. T his is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum ratings for extended periods may effect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Option*
AD 9050BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-28
AD 9050BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RS-28
AD 9050BRS-60	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RS-28

*R = Small Outline (SO); RS = Shrink Small Outline (SSOP).

Table I. AD 9050 Digital Coding (Single Ended Input AIN, AINB Bypassed to GND)

Analog Input	Voltage Level	OR (Out of Range)	Digital Output MSB ... LSB
3.813	Positive F ull Scale +1 LSB	1	1111111111
3.300	M idscale	0	0111111111
2.787	Negative Full Scale - 1 LSB	1	0000000000

PIN FUNCTION DESCRIPTIONS

Pin No	Name	Function
1, 7, 12, 21, 23	GND	Ground.
2, 8, 11	V_{D}	A nalog $+5 \mathrm{~V} \pm 5 \%$ power supply.
3	VREF OUT	Internal bandgap voltage reference (nominally +2.5 V).
4	VREF ${ }_{\text {IN }}$	Input to reference amplifier. Voltage reference for ADC is connected here.
5	COMP	Internal compensation pin, $0.1 \mu \mathrm{~F}$ bypass connected here to $\mathrm{V}_{\mathrm{D}}(+5 \mathrm{~V})$.
6	$\mathrm{REF}_{B P}$	External connection for ($0.1 \mu \mathrm{~F}$) reference bypass capacitor.
9	AINB	Complementary analog input pin (Analog input bar).
10	AIN	A nalog input pin.
13	ENCODE	Encode clock input to ADC. Internal T/H is placed in hold mode (ADC is encoding) on rising edge of encode signal.
14	OR	O ut of range signal. Logic " 0 " when analog input is in nominal range. Logic " 1 " when analog input is out of nominal range.
15	D9 (M SB)	M ost significant bit of ADC output.
16-19	D 8-D 5	Digital output bits of ADC.
20, 22	$V_{\text {D }}$	D igital output power supply (only used by digital outputs).
24-27	D 4-D 1	Digital output bits of ADC.
28	D 0 (LSB)	L east significant bit of ADC output.

PIN CONFIGURATION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 9050 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 2. Timing Diagram

Figure 3. Equivalent Circuits

AD9050- Typical Performance Curves

Figure 4. Power Dissipation vs. Clock Rate

Figure 5. SNR/Distortion vs. Frequency

Figure 6. SNR vs. Clock Rate

Figure 7. SNR vs. Temperature

Figure 8. Two-Tone IMD

Figure 9. Differential Gain/Differential Phase

Figure 10. FFT Plot 40 MSPS, 2.3 MHz

Figure 11. FFT Plot $60 \mathrm{MSPS}, 10.3 \mathrm{MHz}$

Figure 12. FFT Plot $40 \mathrm{MSPS}, 10.3 \mathrm{MHz}$

Figure 13. SNR vs. Clock Pulse Width

Figure 14. ADC Gain vs. AIN Frequency

Figure 15. $t_{P D}$ vs. Temperature 3 V/5 V

THEORY OF OPERATION

Refer to the block diagram on the front page.
The AD 9050 employs a subranging architecture with digital error correction. This combination of design techniques ensures true 10-bit accuracy at the digital outputs of the converter.
At the input, the analog signal is buffered by a high speed differential buffer and applied to a track-and-hold (T/H) that holds the analog value present when the unit is strobed with an ENCODE command. The conversion process begins on the rising edge of this pulse. The two stage architecture completes a coarse and then a fine conversion of the T / H output signal.
Error correction and decode logic correct and align data from the two conversions and present the result as a 10-bit parallel digital word. Output data are strobed on the rising edge of the ENCODE command. The subranging architecture results in five pipeline delays for the output data. Refer to the AD 9050 Timing Diagram.

USING THE AD9050

3 V System

The digital input and outputs of the AD 9050 can be easily configured to directly interface to 3 V logic systems. The encode input (Pin 13) is T T L compatible with a logic threshold of 1.5 V . This input is actually a CM OS stage (refer to Equivalent Encode Input Stage) with a TTL threshold, allowing operation with T TL, CM OS and 3 V CM OS logic families. Using 3 V CM OS logic allows the user to drive the encode directly without the need to translate to +5 V . This saves the user power and board space. As with all high speed data converters, the clock signal must be clean and jitter free to prevent the degradation of dynamic performance.
The AD 9050 outputs can also directly interface to 3 V logic systems. The digital outputs are standard CM OS stages (refer to AD 9050 Output Stage) with isolated supply pins (Pins 20, 22 $V_{D D}$). By varying the voltage on the $V_{D D}$ pins, the digital output levels vary respectively. By connecting Pins 20 and 22 to the 3 V logic supply, the AD 9050 will supply 3 V output levels. C are should be taken to filter and isolate the output supply of the AD 9050 as noise could be coupled into the ADC, limiting performance.

Analog Input

The analog input of the AD 9050 is a differential input buffer (refer to AD 9050 Equivalent Analog Input). The differential inputs are internally biased at +3.3 V , obviating the need for external biasing. Excellent performance is achieved whether the analog inputs are driven single-ended or differential (for best dynamic performance, impedances at AIN and AINB should match).
Figure 16 shows typical connections for the analog inputs when using the AD 9050 in a dc coupled system with single ended signals. All components are powered from a single +5 V supply. The AD 820 is used to offset the ground referenced input signal to the level required by the AD 9050.
AC coupling of the analog inputs of the AD 9050 is easily accomplished. Figure 17 shows capacitive coupling of a single ended signal while Figure 18 shows transformer coupling differentially into the AD 9050.

Figure 16. Single Supply, Single Ended, DC Coupled AD9050

Figure 17. Single Ended, Capacitively Coupled AD9050

Figure 18. Differentially Driven AD9050 Using Transformer Coupling
The AD 830 provides a unique method of providing dc level shift for the analog input. U sing the AD 830 allows a great deal of flexibility for adjusting offset and gain. Figure 19 shows the AD 830 configured to drive the AD 9050. The offset is provided by the internal biasing of the AD 9050 differential input (Pin 9). F or more information regarding the AD 830, see the AD 830 data sheet.

Figure 19. Level Shifting with the AD830

Overdrive of the Analog Input

Special care was taken in the design of the analog input section of the AD 9050 to prevent damage and corruption of data when the input is overdriven. The nominal input range is +2.788 V to $3.812 \mathrm{~V}(1.024 \mathrm{~V}$ p-p centered at 3.3 V). Out-of-range comparators detect when the analog input signal is out of this range and shut the T / H off. The digital outputs are locked at their maximum or minimum value (i.e., all " 0 " or all " 1 "). This precludes the digital outputs from changing to an invalid value when the analog input is out of range.
When the analog input signal returns to the nominal range, the out-of-range comparators switch the T/H back to the active mode and the device recovers in approximately 10 ns .
The input is protected to one volt outside the power supply rails. For nominal power (+5 V and ground), the analog input will not be damaged with signals from +6.0 V to -1.0 V .

Timing

The performance of the AD 9050 is very insensitive to the duty cycle of the clock. Pulse width variations of as much as $\pm 10 \%$ will cause no degradation in performance. (see Figure 13, SN R vs. Clock Pulse Width).
The AD 9050 provides latched data outputs, with five pipeline delays. Data outputs are available one propagation delay ($t_{p D}$) after the rising edge of the encode command (refer to the AD 9050 Timing D iagram). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD 9050; these transients can detract from the converter's dynamic performance.
The minimum guaranteed conversion rate of the AD 9050 is 3 M SPS . Below a nominal of 1.5 M SPS the internal T / H switches to a track function only. This precludes the T / H from drooping to the rail during the conversion process and minimizes saturation issues. At clock rates below 3 M SPS dynamic performance degrades. The AD 9050 will operate in burst mode operation, but the user must flush the internal pipeline each time the clock stops. This requires five clock pulses each time the clock is restarted for the first valid data output (refer to Figure 2 T iming Diagram).

Power Dissipation

The power dissipation specification in the parameter table is measured under the following conditions: encode is 40 M SPS or 60 M SPS , analog input is -0.5 dBFS at 10.3 M Hz , the digital outputs are loaded with approximately 7 pF (10 pF maximum) and $V_{D D}$ is 5 V . These conditions intend to reflect actual usage of the device.
As shown in Figure 4, the actual power dissipation varies based on these conditions. For instance, reducing the clock rate will reduce power as expected for CM OS-type devices. Also the loading determines the power dissipated in the output stages. From an ac standpoint, the capacitive loading will be the key (refer to Equivalent Output Stage).
The analog input frequency and amplitude in conjunction with the clock rate determine the switching rate of the output data bits. Power dissipation increases as more data bits switch at faster rates. For instance, if the input is a dc signal that is out of range, no output bits will switch. T his minimizes power in the output stages, but is not realistic from a usage standpoint.
The dissipation in the output stages can be minimized by interfacing the outputs to 3 V logic (refer to USIN G THE AD 9050, 3 V System). The lower output swings minimize consumption. Refer to Figure 4 for performance characteristics.

Voltage Reference

A stable and accurate +2.5 V voltage reference is built into the AD 9050 (Pin 3, V Ref Output). In normal operation the internal reference is used by strapping Pins 3 and 4 of the AD 9050 together. The internal reference has $500 \mu \mathrm{~A}$ of extra drive current that can be used for other circuits.
Some applications may require greater accuracy, improved temperature performance, or adjustment of the gain of the AD 9050, which cannot be obtained by using the internal reference. F or these applications, an external +2.5 V reference can be used to connect to Pin 4 of the AD 9050. The $\mathrm{VREF}_{\text {IN }}$ requires $5 \mu \mathrm{~A}$ of drive current.
The input range can be adjusted by varying the reference voltage applied to the AD 9050. No appreciable degradation in performance occurs when the reference is adjusted $\pm 5 \%$. The full-scale range of the ADC tracks reference voltage changes linearly.

Figure 20. Evaluation Board Top Layer

Figure 21. Evaluation Board Ground Layer

Figure 22. Evaluation Board Bottom Layer

Figure 23. Silkscreen

Figure 24. Evaluation Board Schematic

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead SOIC
 (R-28)

28-Lead SSOP
(RS-28)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

