

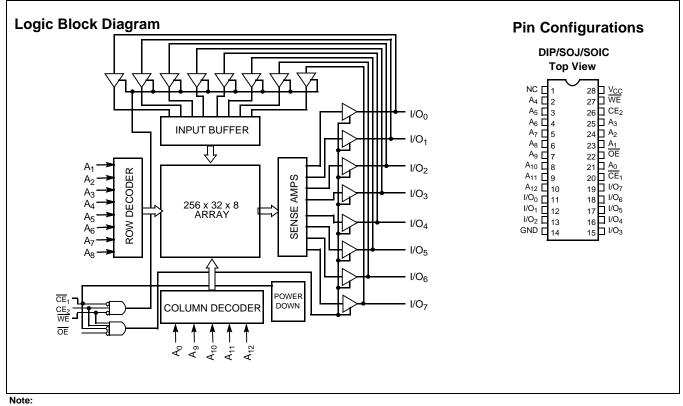
CY7C185D

64K (8K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C185
- High speed
 - t_{AA} = 10 ns
- Low active power
- I_{CC} = 60 mA @ 10 ns
- Low CMOS standby power

— I_{SB2} = 3 mA


- CMOS for optimum speed/power
- Data Retention at 2.0V
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- Available in Lead (Pb)-Free Packages

Functional Description^[1]

The CY7C185D is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}_1), an active HIGH chip enable (\overline{CE}_2), and active LOW output enable (\overline{OE}) and three-state drivers. This device has an automatic power-down feature (\overline{CE}_1 or \overline{CE}_2), reducing the power consumption when deselected.

An active LOW write enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ inputs are both LOW and $\overline{\text{CE}}_2$ is HIGH, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}_1$ and $\overline{\text{OE}}$ active LOW, $\overline{\text{CE}}_2$ active HIGH, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.The CY7C185D is in a standard 28-pin 300-mil-wide DIP, SOJ, or SOIC Pb-Free package.

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05466 Rev. *C

Selection Guide

	CY7C185D-10	CY7C185D-12	CY7C185D-15	Unit
Maximum Access Time	10	12	15	ns
Maximum Operating Current	60	50	40	mA
Maximum Standby Current	3	3	3	mA

PRELIMINARY

CY7C185D

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential	–0.5V to +7.0V
DC Voltage Applied to Outputs in High-Z State ^[2]	–0.5V to V _{CC} + 0.5V

DC Input Voltage ^[2]	–0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$5V\pm10\%$
Industrial	–40°C to +85°C	$5V\pm10\%$

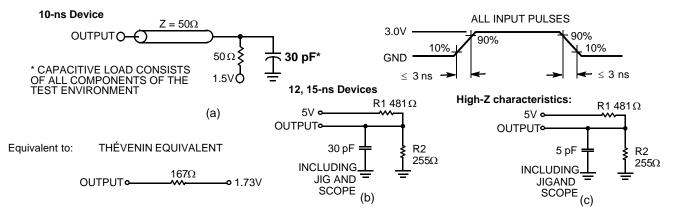
Electrical Characteristics Over the Operating Range

			7C	185D-10	7C	185D-12	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3V	2.0	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled	-1	+1	-1	+1	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		60		50	mA
I _{SB1}	Automatic Power-down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$ Min. Duty Cycle = 100%		10		10	mA
I _{SB2}	Automatic Power-down Current	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE}_1 \geq V_{CC} - 0.3 \text{V}, \\ \text{or } CE_2 \leq 0.3 \text{V} \\ V_{IN} \geq V_{CC} - 0.3 \text{V} \text{ or } V_{IN} \leq 0.3 \text{V} \end{array}$		3.0		3.0	mA
				•	7C	185D-15	
Parameter	Description	Test Conditions	5		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA			2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA				0.4	V
V _{IH}	Input HIGH Voltage				2.0	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]				-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$			-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled			-1	+1	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND				-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA				40	mA
I _{SB1}	Automatic Power-down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$ Min. Duty Cycle = 100%				10	mA
I _{SB2}	Automatic Power-down Current	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE}_1 \geq V_{CC} - 0.3 V \text{ or } CE \\ V_{IN} \geq V_{CC} - 0.3 V \text{ or } V_{IN} \leq 0.3 V \end{array}$	2 ≤ 0.3\	/		3.0	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF

Notes:


2. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 2V for pulse durations of less than 20 ns. 3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. 4. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[4]

Parameter	Description	Test Conditions	All-Packages	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	TBD	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case) ^[4]		TBD	°C/W

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ^[6]

		7C18	7C185D-10		7C185D-12		7C185D-15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•	•				•	•	-
t _{power} ^[5]	V _{CC} (typical) to the first access	100		100		100		μS
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE1}	CE ₁ LOW to Data Valid		10		12		15	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		8	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[7]		5		6		7	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[8]	3		3		3		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		3		3		ns
t _{HZCE}	\overline{CE}_1 HIGH to High Z ^[7, 8] CE ₂ LOW to High Z		5		6		7	ns
t _{PU}	CE ₁ LOW to Power-Up CE ₂ to HIGH to Power-Up	0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down CE ₂ LOW to Power-Down		10		12		15	ns

Notes:

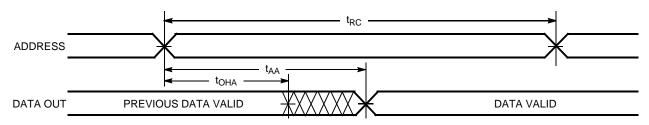
5. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo_L/l_{OH} and 30-pF load capacitance.

 T_{1} T_{LZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady state voltage. 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE1} and t_{LZCE2} for any given device.


Switching Characteristics Over the Operating Range (continued)^[6]

		7C18	7C185D-10		7C185D-12		7C185D-15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[9]		I		1		1	1	1
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE1}	CE ₁ LOW to Write End	8		10		12		ns
t _{SCE2}	CE ₂ HIGH to Write End	8		10		12		ns
t _{AW}	Address Set-up to Write End	7		10		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	7		10		12		ns
t _{SD}	Data Set-up to Write End	6		7		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7]		6		6		7	ns
t _{LZWE}	WE HIGH to Low Z	3		3		3		ns

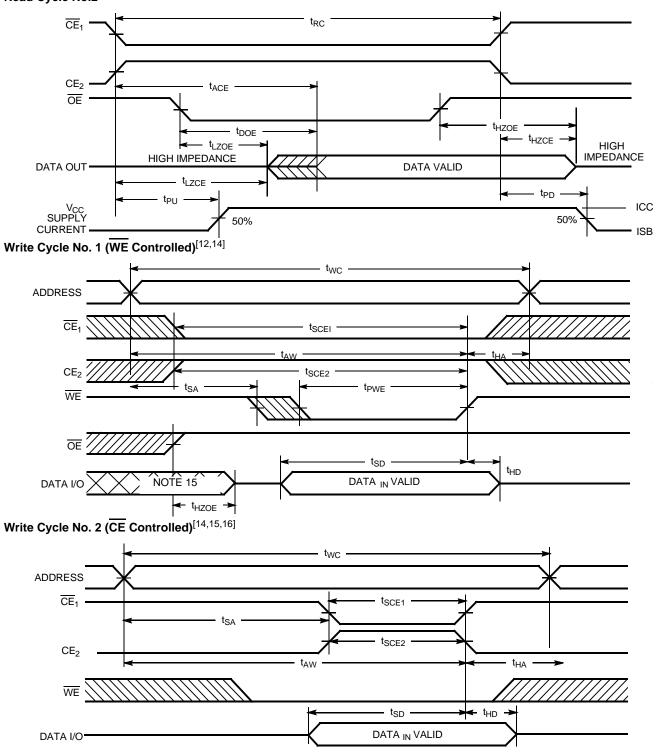
Data Retention Characteristics (Over the Operating Range)


Parameter	Description		Conditions	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Non-L, Com'l / Ind'l	$\frac{V_{CC}}{CE} = V_{DR} = 2.0V,$ $\overline{CE} \ge V_{CC} - 0.3V,$		3	mA
		L-Version Only	$CE \ge V_{CC} = 0.3V$, $V_{IN} > V_{CC} = 0.3V$ or		1.2	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$V_{\rm IN} \ge V_{\rm CC} - 0.3V \text{ or}$ $V_{\rm IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Tim	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No.1^[11,12]

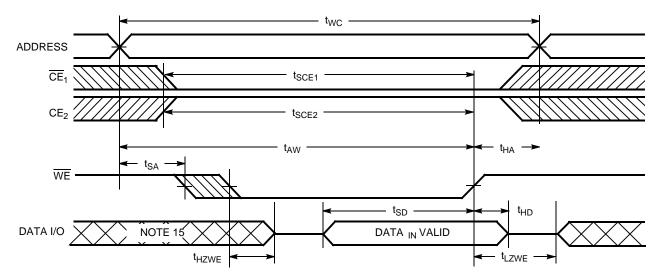

Notes:

9. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 10. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \ \mu s$ or stable at $V_{CC(min.)} \ge 50 \ \mu s$. 11. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$. $CE_2 = V_{IH}$. 12. \overline{WE} is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No.2^[13,14]

Notes:


- 13. Data I/O is High Z if OE = V_{IH}, CE₁ = V_{IH}, WE = V_{IL}, or CE₂=V_{IL}.
 14. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH and WE LOW. CE₁ and WE must be LOW and CE₂ must be HIGH to initiate write. A write can be terminated by CE₁ or WE going HIGH or CE₂ going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- During this period, the I/Os are in the output state and input signals should not be applied.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

PRELIMINARY

Switching Waveforms (continued)

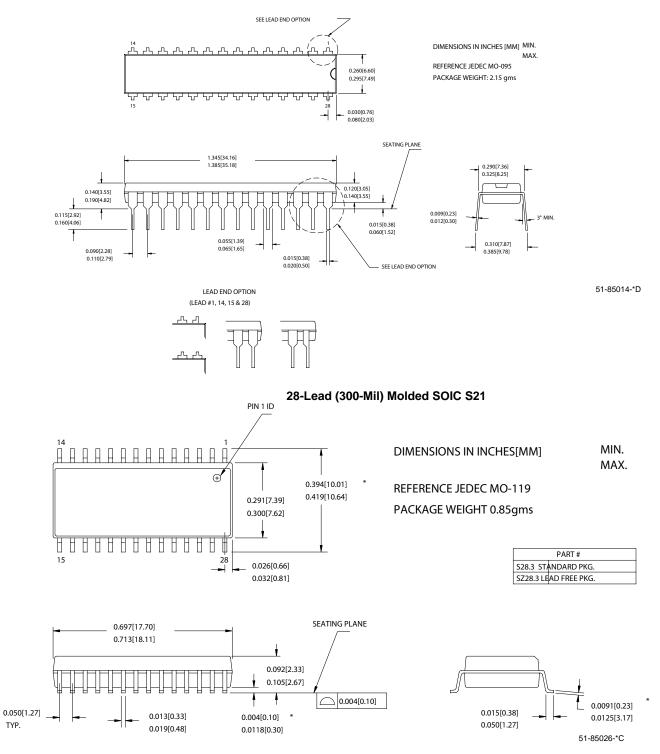
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[14,15,16,17]

Truth Table

CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Х	Х	Х	High Z	Deselect/Power-down
Х	L	Х	Х	High Z	Deselect/Power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C185D-10PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-10SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-10VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-10VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial
12	CY7C185D-12PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-12SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-12VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-12VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial
15	CY7C185D-15PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-15SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-15VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-15VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial


Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

Note: 17. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.


Package Diagrams

28-Lead (300-Mil) PDIP P21

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Downloaded from Arrow.com.

Document History Page

Document Title: CY7C185D 64K (8K x 8) Static RAM (Preliminary) Document Number: 38-05466				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Datasheet for C9 IPP
*A	233715	See ECN	RKF	DC parameters are modified as per EROS (Spec # 01-2165) Pb-free offering in Ordering Information
*В	262950	See ECN	RKF	Added T _{power} Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information
*C	307593	See ECN	RKF	 Reduced Speed bins to -10, -12 and -15 ns Added 'Industrial' grade parts to the Ordering Info on Page #6