LTC 1156

FEATURES

- No External Charge Pump Components
- Fully Enhances N-Channel Power MOSFETs
- 16 Microamps Standby Current
- 95 Microamps ON Current
- Wide Power Supply Range 4.5V to 18V
- Controlled Switching ON and OFF Times
- Replaces P-Channel High Side Switches
- Compatible with Standard Logic Families
- Available in 16-pin SOL Package

APPLICATIONS

- Laptop Computer Power Switching
- SCSI Termination Power Switching
- Cellular Telephone Power Management
- P-Channel Switch Replacement
- Battery Charging and Management
- Low Frequency H-Bridge Driver
- Stepper Motor and DC Motor Control

Quad High Side Micropower MOSFET Driver with Internal Charge Pump DESCRIPTION

The LTC1156 quad High side gate driver allows using low cost N-channel FETs for high side switching applications. An internal charge pump boosts the gate drive voltage above the positive rail, fully enhancing an N-channel MOS switch with no external components. Micropower operation, with 16 μ A standby current and 95 μ A operating current, allows use in virtually all systems with maximum efficiency.

Included on chip is independent over-current sensing to provide automatic shutdown in case of short circuits. A time delay can be added to the current sense to prevent false triggering on high in-rush current loads.

The LTC1156 operates off of a 4.5V to 18V supply and is well suited for battery-powered applications, particularly where micropower "sleep" operation is required.

The LTC1156 is available in both 16-pin DIP and 16-pin SOL packages.

1156 TA01

TYPICAL APPLICATION

Laptop Computer Power Management

ALL COMPONENTS SHOWN ARE SURFACE MOUNT. MINIMUM PARTS COUNT SHOWN. CURRENT LIMITS CAN BE SET SEPARATELY AND TAILORED TO INDIVIDUAL LOAD CHARACTERISTICS.

* IMS026 INTERNATIONAL MANUFACTURING SERVICES, INC. (401) 683-9700

Standby Supply Current

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	22V
Input Voltage	$(V_{S} + 0.3V)$ to $(GND - 0.3V)$
Gate Voltage	$(V_{S} + 24V)$ to $(GND - 0.3V)$
Current (Any Pin)	

Operating Temperature Range	
LTC1156C	0°C to 70°C
Storage Temperature Range	. –65°C to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $V_{s} = 4.5V$ to 18V, $T_{A} = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _S	Supply Voltage	(Note 1)	•	4.5		18	V
IQ	Quiescent Current OFF	$V_{\rm S}$ = 5V, $V_{\rm IN}$ = 0V (Note 2)			16	40	μA
IQ	Quiescent Current ON	$V_{\rm S}$ = 5V, $V_{\rm IN}$ = 5V (Note 3)			95	125	μA
Ι _Q	Quiescent Current ON	V _S = 12V, V _{IN} = 5V (Note 3)			180	400	μA
V _{INH}	Input High Voltage		•	2.0			V
V _{INL}	Input Low Voltage		•			0.8	V
l _{IN}	Input Current	$0V < V_{IN} < V_S$	•			±1.0	μA
C _{IN}	Input Capacitance				5		pF
V _{SEN}	Drain Sense Threshold Voltage		•	80 75	100 100	120 125	mV mV
I _{SEN}	Drain Sense Input Current	$0V < V_{SEN} < V_S$	•			±0.1	μA
V _{GATE} – V _S	Gate Voltage Above Supply	$V_{S} = 5V$ $V_{S} = 6V$ $V_{S} = 12V$	•	6.0 7.5 15	7.0 8.3 18	9.0 15.0 25	V V V
t _{on}	Turn-ON Time	$V_{S} = 5V, C_{GATE} = 1000pF$ Time for $V_{GATE} > V_{S} + 2V$ Time for $V_{GATE} > V_{S} + 5V$ $V_{S} = 12V, C_{GATE} = 1000pF$ Time for $V_{GATE} > V_{S} + 5V$ Time for $V_{GATE} > V_{S} + 10V$		50 200 50 120	250 1100 180 450	750 2000 500 1200	μs μs μs μs

ELECTRICAL CHARACTERISTICS $v_s = 4.5V$ to 18V, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
t _{OFF}	Turn-OFF Time	$V_{S} = 5V, C_{GATE} = 1000 pF$	10	00	00	
		Time for V _{GATE} < 1V	 10	36	60	μs
		$V_{S} = 12V, C_{GATE} = 1000pF$				
		Time for V _{GATE} < 1V	10	26	60	μs
t _{SC} Short Circuit Turn-OFF Time	V _S = 5V, C _{GATE} = 1000pF					
	Time for V _{GATE} < 1V	5	16	30	μs	
	V _S = 12V, C _{GATE} = 1000pF					
	Time for V _{GATE} < 1V	5	16	30	μs	

The ${ullet}$ denotes specifications which apply over the full operating temperature range.

Note 1: Both V_S pins (3 and 8) must be connected together, and both ground pins (1 and 6) must be connected together.

Note 2: Quiescent current OFF is for all channels in OFF condition.

Note 3: Quiescent current ON is per driver and is measured independently.

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current per Channel ON

Supply Current per Channel ON

High Side Gate Voltage

Low Side Gate Voltage

