

Multisupply Supervisor/Sequencer with ADC and Temperature Monitoring

Data Sheet ADM1063-EP

FEATURES

Complete supervisory and sequencing solution for up to 10 supplies

Extended temperature range: -40°C to +105°C

10 supply fault detectors enable supervision of supplies to

<0.5% accuracy at all voltages at 25°C

< 1.0% accuracy across all voltages and temperatures

5 selectable input attenuators allow supervision of supplies to 14.4 V on VH

6 V on VP1 to VP4 (VPx)

5 dual-function inputs, VX1 to VX5 (VXx)

High impedance input to supply fault detector with thresholds between 0.573 V and 1.375 V

General-purpose logic input

10 programmable driver outputs, PDO1 to PDO10 (PDOx)

Open-collector with external pull-up

Push/pull output, driven to VDDCAP or VPx

Open collector with weak pull-up to VDDCAP or VPx

Internally charge-pumped high drive for use with external N-FET (PDO1 to PDO6 only)

Sequencing engine (SE) implements state machine control of PDOx outputs

State changes conditional on input events

Enables complex control of boards

Power-up and power-down sequence control

Fault event handling

Interrupt generation on warnings

Watchdog function can be integrated in SE

Program software control of sequencing through SMBus

Complete voltage margining solution for 6 voltage rails 12-bit ADC for readback of all supervised voltages

1 internal and 2 external temperature sensors

Reference input (REFIN) has 2 input options

Driven directly from 2.048 V (±0.25%) REFOUT pin

More accurate external reference for improved ADC

Device powered by the highest of VPx, VH for improved redundancy

User EEPROM: 256 bytes

Industry-standard, 2-wire bus interface (SMBus)

Guaranteed PDO low with VH, VPx = 1.2 V

Available in 40-lead, 6 mm × 6 mm LFCSP package

For more information about the ADM1063 register map, refer to the AN-698 Application Note at www.analog.com.

Rev. A Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

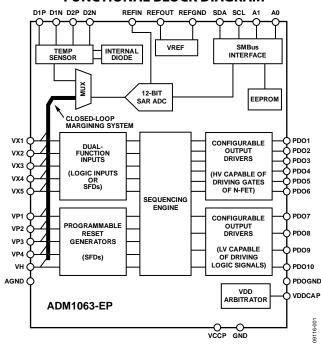


Figure 1.

APPLICATIONS

Central office systems
Servers/routers
Multivoltage system line cards
DSP/FPGA supply sequencing
In-circuit testing of margined supplies

GENERAL DESCRIPTION

The ADM1063-EP is a configurable supervisory/sequencing device that offers a single-chip solution for supply monitoring and sequencing in multiple supply systems. In addition to these functions, the ADM1063-EP integrates a 12-bit ADC that can be used to accurately read back up to 12 separate voltages.

The device also provides up to 10 programmable inputs for monitoring undervoltage faults, overvoltage faults, or out-of-window faults on up to 10 supplies. In addition, 10 programmable outputs can be used as logic enables. Six of these programmable outputs can provide up to a 12 V output for driving the gate of an N-FET that can be placed in the path of a supply.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2010–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

5/10—Revision 0: Initial Version

Features	1
Functional Block Diagram	1
Applications	1
General Description	1
Revision History	2
Detailed Block Diagram	3
Specifications	4
Absolute Maximum Ratings	7
REVISION HISTORY	
8/13—Rev. 0 to Rev. A	

I nermai Resistance	•••••
ESD Caution	
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	
Outline Dimensions	1
Ordering Guide	1

Temperature measurement is possible with the ADM1063-EP. The device contains one internal temperature sensor and two pairs of differential inputs for remote thermal diodes. These are measured by the 12-bit ADC.

The logical core of the device is a sequencing engine. This state-machine-based construction provides up to 63 different states. This design enables very flexible sequencing of the outputs based on the condition of the inputs.

The device is controlled via configuration data that can be programmed into an EEPROM. The entire configuration can be programmed using an intuitive GUI-based software package provided by Analog Devices, Inc.

Full details about this enhanced product are available in the ADM1063 data sheet, which should be consulted in conjunction with this data sheet.

DETAILED BLOCK DIAGRAM

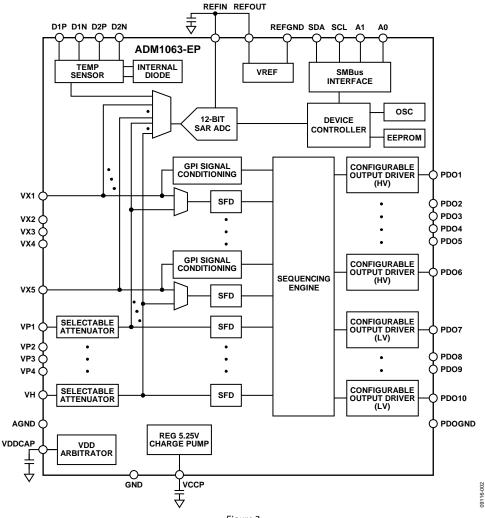


Figure 2.

SPECIFICATIONS

VH = 3.0~V to $14.4~V^1$, VPx = 3.0~V to $6.0~V^1$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER SUPPLY ARBITRATION					
VH, VPx	3.0			V	Minimum supply required on one of VH, VPx
VPx			6.0	V	Maximum VDDCAP = 5.1 V, typical
VH			14.4	V	VDDCAP = 4.75 V
VDDCAP	2.7	4.75	5.4	V	Regulated LDO output
C _{VDDCAP}	10			μF	Minimum recommended decoupling capacitance
POWER SUPPLY					
Supply Current, I _{VH} , I _{VPx}		4.2	6	mA	VDDCAP = 4.75 V, PDO1 to PDO10 off, ADC off
Additional Currents					
All PDO FET Drivers On		1		mA	VDDCAP = 4.75 V, PDO1 to PDO6 loaded with
					1 μA each, PDO7 to PDO10 off
Current Available from VDDCAP			2	mA	Maximum additional load that can be drawn from all PDO pull-ups to VDDCAP
ADC Supply Current		1		mA	Running round-robin loop
EEPROM Erase Current		10		mA	1 ms duration only, VDDCAP = 3 V
SUPPLY FAULT DETECTORS					<u> </u>
VH Pin					
Input Impedance		52		kΩ	
Input Attenuator Error		±0.05		%	Midrange and high range
Detection Ranges					
High Range	6		14.4	V	
Midrange	2.5		6	V	
VPx Pins					
Input Impedance		52		kΩ	
Input Attenuator Error		±0.05		%	Low range and midrange
Detection Ranges					
Midrange	2.5		6	V	
Low Range	1.25		3	V	
Ultralow Range	0.573		1.375	V	No input attenuation error
VXx Pins					
Input Impedance	1			ΜΩ	
Detection Range				_	
Ultralow Range	0.573		1.375	V	No input attenuation error
Absolute Accuracy	1.0,0		±1	%	VREF error + DAC nonlinearity + comparator offset
				, ,	error + input attenuation error
Threshold Resolution		8		Bits	·
Digital Glitch Filter		0		μs	Minimum programmable filter length
		100		μs	Maximum programmable filter length

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
ANALOG-TO-DIGITAL CONVERTER					
Signal Range	0		V _{REFIN}	V	The ADC can convert signals presented to the VH, VPx, and VXx pins; VPx and VH input signals are attenuated depending on the selected range; a signal at the pin corresponding to the selected range is from 0.573 V to 1.375 V at the ADC input
Input Reference Voltage on REFIN Pin, VREFIN		2.048		V	
Resolution		12		Bits	
INL			±2.5	LSB	Endpoint corrected, V _{REFIN} = 2.048 V
Gain Error			±0.05	%	$V_{REFIN} = 2.048 V$
Conversion Time		0.44		ms	One conversion on one channel
		84		ms	All 12 channels selected, 16× averaging enabled
Offset Error			±2	LSB	$V_{REFIN} = 2.048 V$
Input Noise		0.25		LSB rms	Direct input (no attenuator)
TEMPERATURE SENSOR ²					
Local Sensor Accuracy		±3		°C	VDDCAP = 4.75 V
Local Sensor Supply Voltage Coefficient		-1.7		°C/V	
Remote Sensor Accuracy		±3		°C	VDDCAP = 4.75 V
Remote Sensor Supply Voltage Coefficient		-3		°C	
Remote Sensor Current Source		200		μΑ	High level
		12		μΑ	Low level
Temperature for Code 0x800		0		°C	VDDCAP = 4.75 V
Temperature for Code 0xC00		128		°C	VDDCAP = 4.75 V
Temperature Resolution per Code		0.125		°C	
REFERENCE OUTPUT	2.042	2.040	2.052	W	No loo d
Reference Output Voltage	2.043	2.048	2.053	V	No load
Load Regulation		-0.25		mV	Sourcing current, I _{DACXMAX} = -100 μA
Minimove Lond Compaiton	1	0.25		mV r	Sinking current, I _{DACXMAX} = 100 µA
Minimum Load Capacitance PSRR	1	60		μF dB	Capacitor required for decoupling, stability DC
PROGRAMMABLE DRIVER OUTPUTS		00		UD	
High Voltage (Charge Pump) Mode (PDO1 to PDO6)					
Output Impedance		500		kΩ	
V_{OH}	11	12.5	14	V	$I_{OH} = 0 \mu A$
	10.5	12	13.5	V	$I_{OH} = 1 \mu A$
loutavg		20		μΑ	$2 \text{ V} < \text{V}_{OH} < 7 \text{ V}$
Standard (Digital Output) Mode (PDO1 to PDO10)					
V_{OH}	2.4			V	V_{PU} (pull-up to VDDCAP or VPx) = 2.7 V, I_{OH} = 0.5 mA
			4.5	V	V_{PU} to $VPx = 6.0 \text{ V}$, $I_{OH} = 0 \text{ mA}$
	$V_{PU} - 0.3$			V	$V_{PU} \le 2.7 \text{ V, } I_{OH} = 0.5 \text{ mA}$
Vol	0		0.50	V	I _{OL} = 20 mA
I _{OL} ³			20	mA	Maximum sink current per PDOx pin
I _{SINK} ³			60	mA	Maximum total sink for all PDOx pins
R _{PULL-UP}	19	20	29	kΩ	Internal pull-up
Isource (VPx) ³			2	mA	Current load on any VPx pull-ups, that is, total source current available through any number of PDOx pull-up switches configured onto any one VPx pin
Three-State Output Leakage Current			10	μΑ	$V_{PDO} = 14.4 \text{ V}$
Oscillator Frequency	90	100	110	kHz	All on-chip time delays derived from this clock

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DIGITAL INPUTS (VXx, A0, A1)					
Input High Voltage, V _{IH}	2.0			V	Maximum $V_{IN} = 5.5 \text{ V}$
Input Low Voltage, V _{IL}			0.8	V	Maximum $V_{IN} = 5.5 \text{ V}$
Input High Current, I _{IH}	-1			μΑ	$V_{IN} = 5.5 V$
Input Low Current, I _L			1	μΑ	$V_{IN} = 0 V$
Input Capacitance		5		pF	
Programmable Pull-Down Current,		20		μΑ	VDDCAP = 4.75 V , $T_A = 25^{\circ}\text{C}$ if known logic state is required
SERIAL BUS DIGITAL INPUTS (SDA, SCL)					·
Input High Voltage, V _{IH}	2.0			V	
Input Low Voltage, V _{IL}			0.8	V	
Output Low Voltage, VoL ³			0.4	V	$I_{OUT} = -3.0 \text{ mA}$
SERIAL BUS TIMING ⁴					
Clock Frequency, f _{SCLK}			400	kHz	
Bus Free Time, t _{BUF}	1.3			μs	
Start Setup Time, t _{SU:STA}	0.6			μs	
Stop Setup Time, t _{SU;STO}	0.6			μs	
Start Hold Time, thd;sta	0.6			μs	
SCL Low Time, t _{LOW}	1.3			μs	
SCL High Time, t _{HIGH}	0.6			μs	
SCL, SDA Rise Time, t _R			300	ns	
SCL, SDA Fall Time, t _F			300	ns	
Data Setup Time, t _{SU;DAT}	100			ns	
Data Hold Time, t _{HD;DAT}	5			ns	
Input Low Current, I _L			1	μΑ	$V_{IN} = 0 V$
SEQUENCING ENGINE TIMING					
State Change Time		10		μs	

¹ At least one of the VH, VPx pins must be ≥3.0 V to maintain the device supply on VDDCAP.

² All temperature sensor measurements are taken with round-robin loop enabled and at least one other voltage input being measured.

³ Specification is not production tested but is supported by characterization data at initial product release.

⁴ Timing specifications are guaranteed by design and supported by characterization data.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Voltage on VH Pin	16 V
Voltage on VPx Pins	7 V
Voltage on VXx Pins	-0.3 V to +6.5 V
Voltage on A0, A1 Pins	−0.3 V to +7 V
Voltage on REFIN, REFOUT Pins	5 V
Voltage on VDDCAP, VCCP Pins	6.5 V
Voltage on PDOx Pins	16 V
Voltage on SDA, SCL Pins	7 V
Voltage on GND, AGND, PDOGND, REFGND Pins	-0.3 V to +0.3 V
Voltage on DxN, DxP Pins	−0.3 V to +5 V
Input Current at Any Pin	±5 mA
Package Input Current	±20 mA
Maximum Junction Temperature (T _J max)	150°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering Vapor Phase, 60 sec)	215°C
ESD Rating, All Pins	2000 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θја	Unit
40-Lead LFCSP	26.5	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

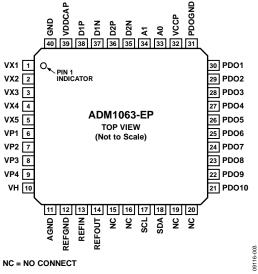


Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

	anction Descriptions
Pin No.	Mnemonic
1 to 5	VX1 to VX5 (VXx)
6 to 9	VP1 to VP4 (VPx)
10	VH
11	AGND (In a typical application, all ground pins are connected together.)
12	REFGND (In a typical application, all ground pins are connected together.)
13	REFIN
14	REFOUT
15, 16, 19, 20	NC NC
17	SCL
18	SDA
21 to 30	PDO10 to PDO1
31	PDOGND (In a typical application, all ground pins are connected together.)
32	VCCP
33	AO
34	A1
35	D2N
36	D2P
37	D1N
38	D1P
39	VDDCAP
40	GND (In a typical application, all ground pins are connected together.)
EPAD	Exposed pad. This pad is a no connect (NC). If possible, this pad should be soldered to the board for improved mechanical stability.

TYPICAL PERFORMANCE CHARACTERISTICS

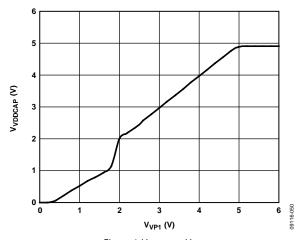


Figure 4. VVDDCAP VS. VVP1

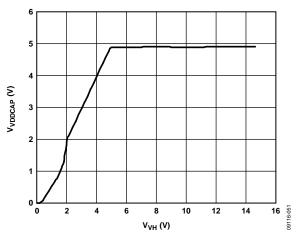


Figure 5. VVDDCAP VS. VVH

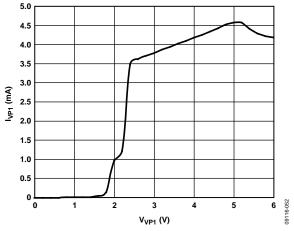


Figure 6. IVP1 vs. VVP1 (VP1 as Supply)

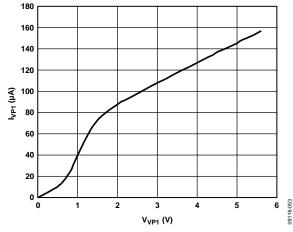


Figure 7. IVP1 vs. VVP1 (VP1 Not as Supply)

Figure 8. IvH vs. VvH (VH as Supply)

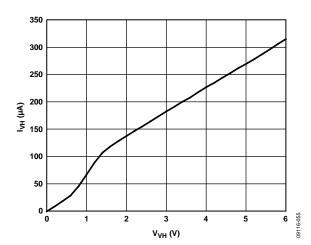


Figure 9. IvH vs. VvH (VH Not as Supply)

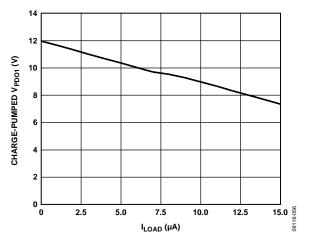


Figure 10. Charge-Pumped V_{PDO1} (FET Drive Mode) vs. I_{LOAD}

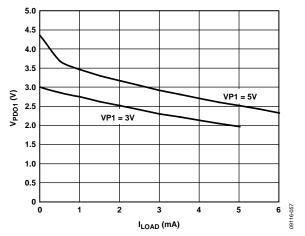


Figure 11. V_{PDO1} (Strong Pull-Up to VPx) vs. I_{LOAD}

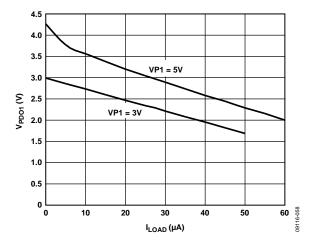


Figure 12. V_{PDO1} (Weak Pull-Up to VPx) vs. I_{LOAD}

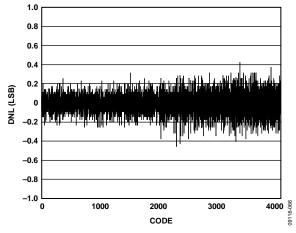


Figure 13. DNL for ADC

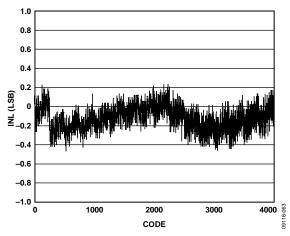


Figure 14. INL for ADC

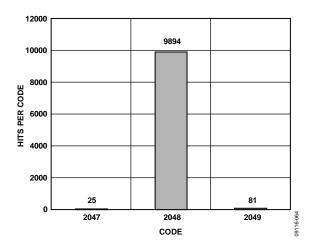


Figure 15. ADC Noise, Midcode Input, 10,000 Reads

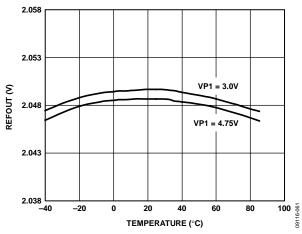


Figure 16. REFOUT vs. Temperature

OUTLINE DIMENSIONS

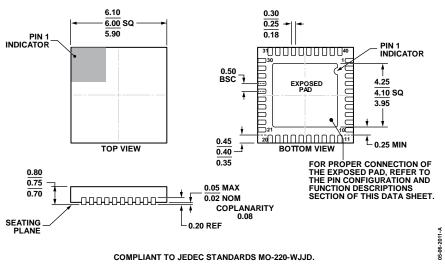


Figure 17. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 6 mm × 6 mm Body, Very Thin Quad (CP-40-9) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADM1063BCPZ-EP-RL7	-40°C to +105°C	40-Lead LFCSP_WQ	CP-40-9

 $^{^{1}}$ Z = RoHS Compliant Part.

