

Typical Applications

The HMC618LP3E is ideal for:

- Cellular/3G and LTE/WiMAX/4G
- BTS & Infrastructure
- Repeaters and Femto Cells
- Public Safety Radios

Functional Diagram

Electrical Specifications $T_{A} = +25^{\circ}$ C, Rbias = 470 Ohm for Vdd1 = Vdd2 = 5V

HMC618LP3 / 618LP3E

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Features

Noise Figure: 0.75 dB Gain: 19 dB OIP3: 36 dBm Single Supply: +3V to +5V 50 Ohm Matched Input/Output 16 Lead 3x3mm SMT Package: 9 mm²

General Description

The HMC618LP3E is a GaAs pHEMT MMIC Low Noise Amplifier that is ideal for Cellular/3G and LTE/WiMAX/4G basestation front-end receivers operating between 1.2 - 2.2 GHz. The amplifier has been optimized to provide 0.75 dB noise figure, 19 dB gain and +36 dBm output IP3 from a single supply of +5V. Input and output return losses are excellent and the LNA requires minimal external matching and bias decoupling components. The HMC618LP3E shares the same package and pinout with the HMC617LP3E 0.55 - 1.2 GHz LNA. The HMC618LP3E can be biased with +3V to +5V and features an externally adjustable supply current which allows the designer to tailor the linearity performance of the LNA for each application. The HMC618LP3(E) offers improved noise figure versus the previously released HMC375LP3(E) and the HMC382LP3(E).

		Vdd = 5 Vdc								
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		1200 - 170	0		1700 - 200	0	2	2000 - 220	0	MHz
Gain	19	23		16	19		13.5	17		dB
Gain Variation Over Temperature		0.012			0.008			0.008		dB/°C
Noise Figure		0.65	0.85		0.75	1.1		0.85	1.15	dB
Input Return Loss		22.5			18			19.5		dB
Output Return Loss		13			12.5			10		dB
Output Power for 1 dB Compression (P1dB)	14.5	19		16.5	20		18	20		dBm
Saturated Output Power (Psat)		20.5			20.5			20.5		dBm
Output Third Order Intercept (IP3)		33.5			35			35.5		dBm
Supply Current (Idd)		89	118		89	118		89	118	mA

* Rbias resistor sets current, see application circuit herein

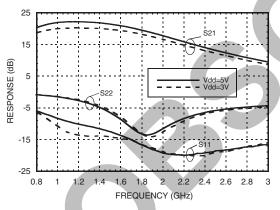
For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

ROHS V

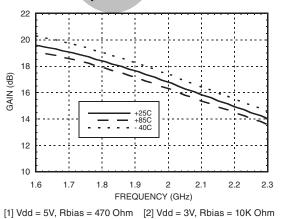
HMC618LP3 / 618LP3E

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

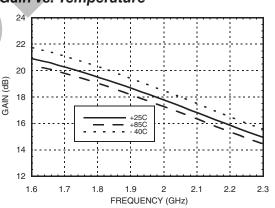
Electrical Specifications

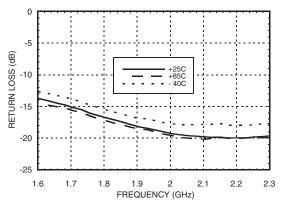

 $T_A = +25^{\circ}$ C, Rbias = 10K Ohm for Vdd1 = Vdd2 = 3V

Demension		Vdd = 3 Vdc								Units
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		1200 - 170	0	1	1700 - 200	0	2	2000 - 2200	C	MHz
Gain	18	22		15	18		12.5	15.8		dB
Gain Variation Over Temperature		0.009			0.009			0.009		dB/°C
Noise Figure		0.8	1.1		0.9	1.2		0.9	1.2	dB
Input Return Loss		26			17			19		dB
Output Return Loss		14			13			11		dB
Output Power for 1 dB Compression (P1dB)	10	15		12	15		13	15		dBm
Saturated Output Power (Psat)		16			16			16		dBm
Output Third Order Intercept (IP3)		28			28			28		dBm
Supply Current (Idd)		47	65		47	65		47	65	mA

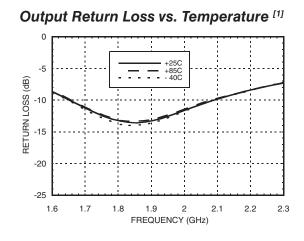

* Rbias resistor sets current, see application circuit herein

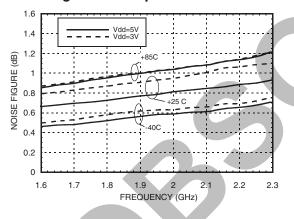
1700 to 2200 MHz Tune


Broadband Gain & Return Loss^{[1][2]}

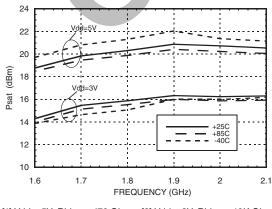

Gain vs. Temperature [2]

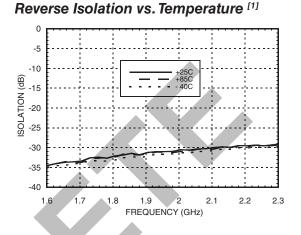
Gain vs. Temperature [1]

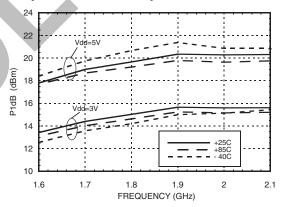


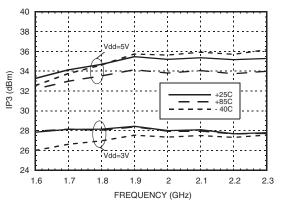


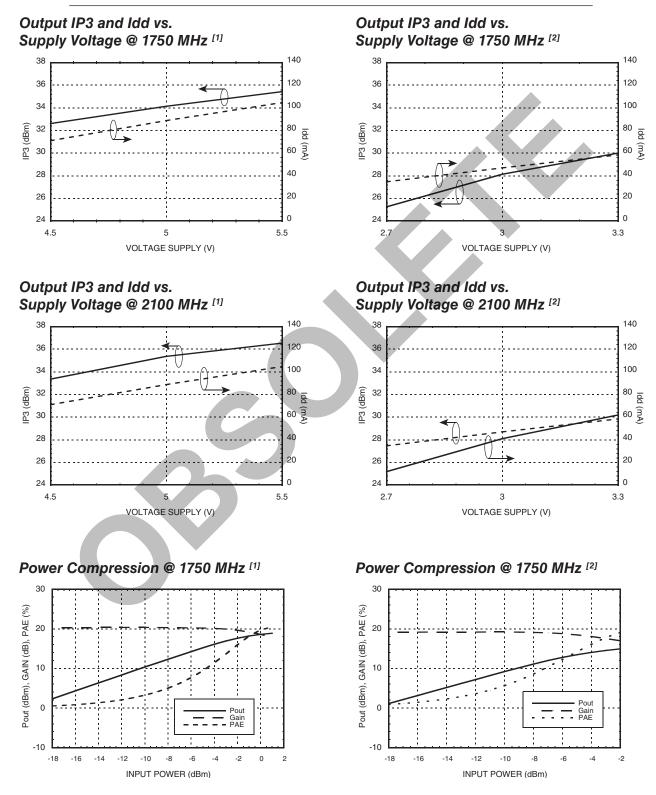
GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz


1700 to 2200 MHz Tune


Noise Figure vs Temperature [1] [2] [3]


Psat vs. Temperature ^{[1] [2]}


Vdd = 5V, Rbias = 470 Ohm
Vdd = 3V, Rbias = 10K Ohm
Measurement reference plane shown on evaluation PCB drawing.

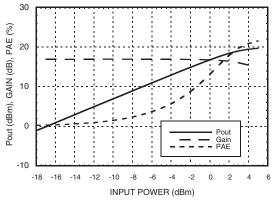

Output P1dB vs. Temperature [1] [2]

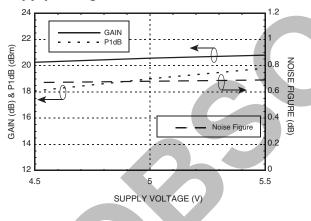
Output IP3 vs. Temperature [1] [2]

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

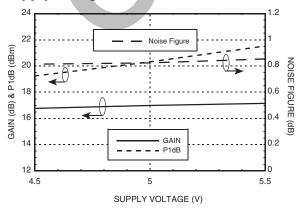
GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

1700 to 2200 MHz Tune

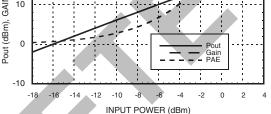

[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm


GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

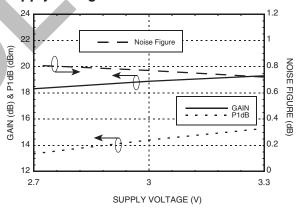
1700 to 2200 MHz Tune


Power Compression @ 2100 MHz [1]

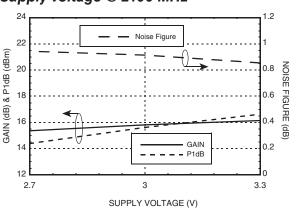
Gain, Power & Noise Figure vs. Supply Voltage @ 1750 MHz [1]



Gain, Power & Noise Figure vs. Supply Voltage @ 2100 MHz [1]

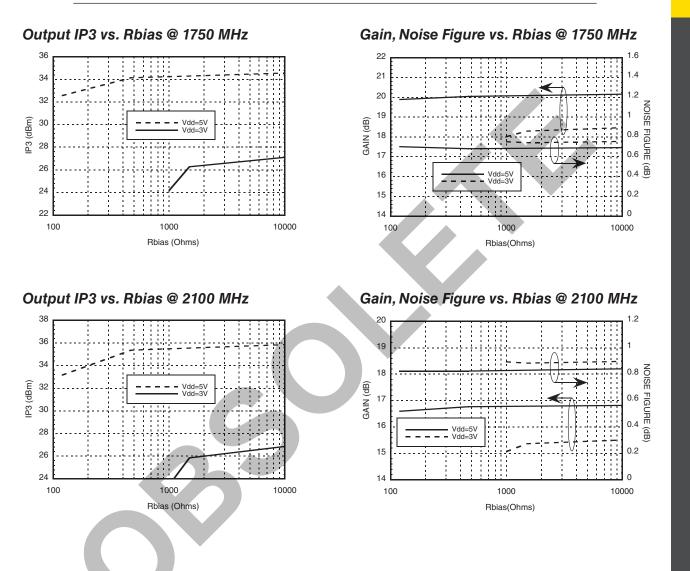


[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm


Power Compression @ 2100 MHz [2] 30 Pout (dBm), GAIN (dB), PAE (%) 20 10

Gain, Power & Noise Figure vs. Supply Voltage @ 1750 MHz [2]

Gain, Power & Noise Figure vs. Supply Voltage @ 2100 MHz ^[2]



For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

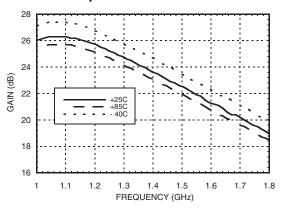
GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

1700 to 2200 MHz Tune

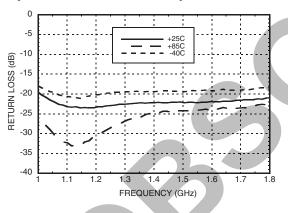
AMPLIFIERS - LOW NOISE - SMT

[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm

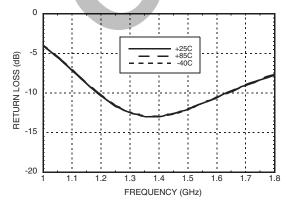
v08.1210



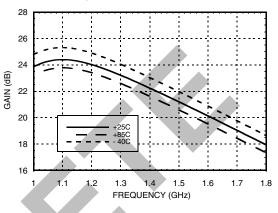
HMC618LP3 / 618LP3E


GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

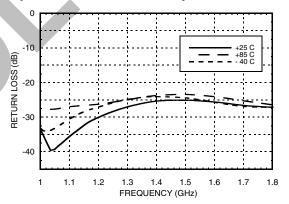
1200 to 1700 MHz Tune


Gain vs. Temperature [1]

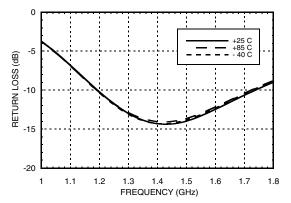
Input Return Loss vs. Temperature [1]



Output Return Loss vs. Temperature [1]

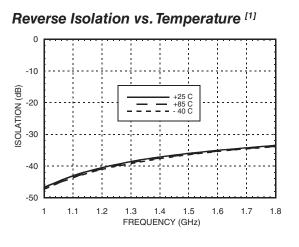


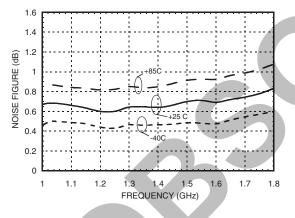
[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm


Gain vs. Temperature [2]

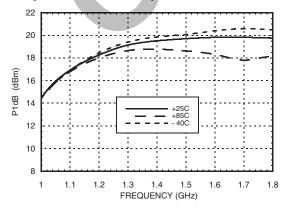
Input Return Loss vs. Temperature [2]

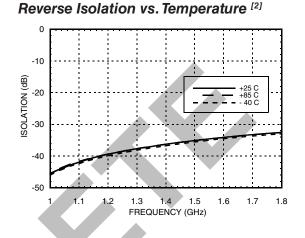
Output Return Loss vs. Temperature [2]

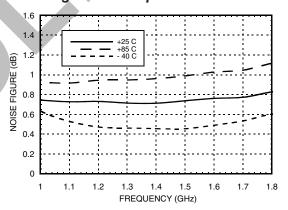

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

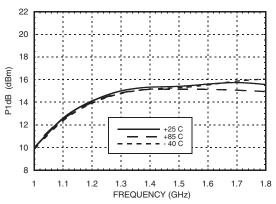

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

RoHS V EARTH FRIENDLY


1200 to 1700 MHz Tune


Noise Figure vs. Temperature [1]

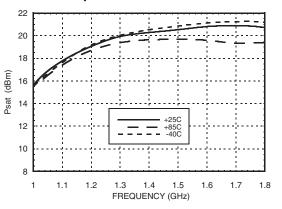

Output P1dB vs. Temperature [1]

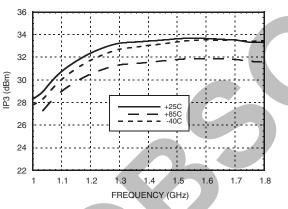

[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm

Noise Figure vs. Temperature^[2]

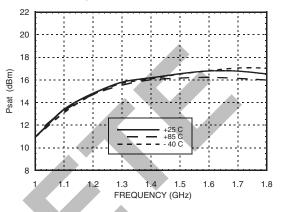
Output P1dB vs. Temperature [2]

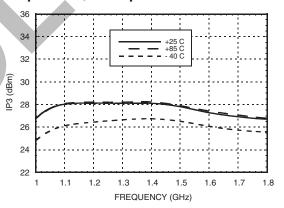
For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com




GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

1200 to 1700 MHz Tune


Psat vs. Temperature [1]


Output IP3 vs. Temperature [1]

Psat vs. Temperature [2]

Output IP3 vs. Temperature [2]

Absolute Bias Resistor Range & Recommended Bias Resistor Values for Idd

		ldd1 · ldd0 (mA)			
Vdd1 = Vdd2 (V)	Min (Ohms)	Max (Ohms)	R1 (Ohms)	Idd1 + Idd2 (mA)	
			1k	28	
3V	1K ^[3]	Open Circuit	1.5k	34	
			10k	47	
			120	71	
5V	0	Open Circuit	270	84	
			470	89	

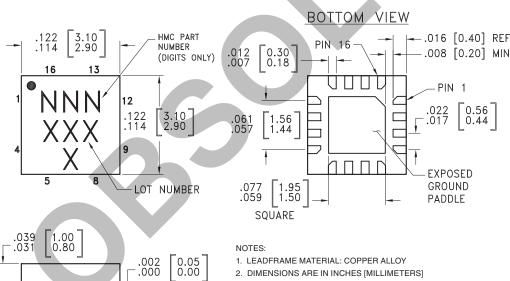
[1] Vdd = 5V, Rbias = 470 Ohm
[2] Vdd = 3V, Rbias = 10K Ohm
[3] With Vdd= 3V and Rbias < 1K Ohm may result in the part becoming conditionally stable which is not recommended.

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2)	+6V
RF Input Power (RFIN) (Vdd = +5 Vdc)	+10 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 9.68 mW/°C above 85 °C)	0.63 W
Thermal Resistance (channel to ground paddle)	103.4 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Typical Supply Current vs. Vdd Rbias = 10 KOhm for 3V Rbias = 470 Ohm for 5V

	••
Vdd (Vdc)	ldd (mA)
2.7	35
3.0	47
3.3	58
4.5	72
5.0	89
55	106

Note: Amplifier will operate over full voltage ranges shown above.

- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

.003[0.08]|C

SEATING

PLANE

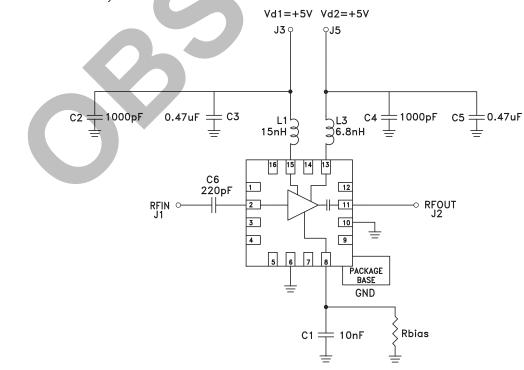
-C-

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC618LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	618 XXXX
HMC618LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>618</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

[3] 4-Digit lot number XXXX

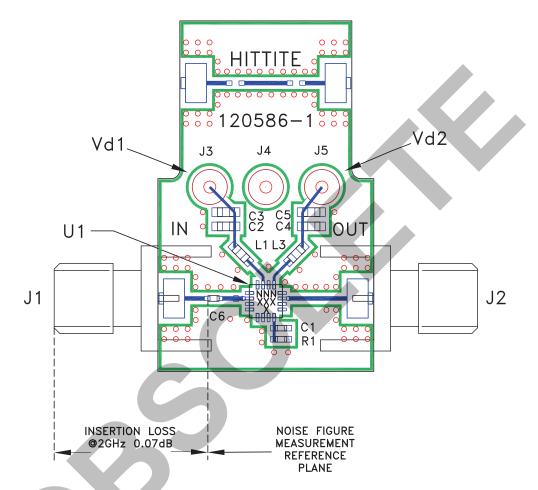


GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Pin Number	Function	Description	Interface Schematic
1, 3 - 5, 7, 9, 12, 14, 16	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
2	RFIN	This pin is DC coupled and matched to 50 Ohms.	
6, 10	GND	This pin and ground paddle must be connected to RC/DC ground.	O GND
8	RES	This pin is used to set the DC current of the amplifier by selection of the external bias resistor. See application circuit.	
11	RFOUT	This pin is matched to 50 Ohms.	
13, 15	Vdd2, Vdd1	Power Supply Voltage for the amplifier. External bypass capacitors of 1000 pF, and 0.47 μF are required.	Vdd1, Vdd2 =

Application Circuit, 1700 to 2200 MHz Tune

[1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K


For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Evaluation PCB, 1700 to 2200 MHz Tune

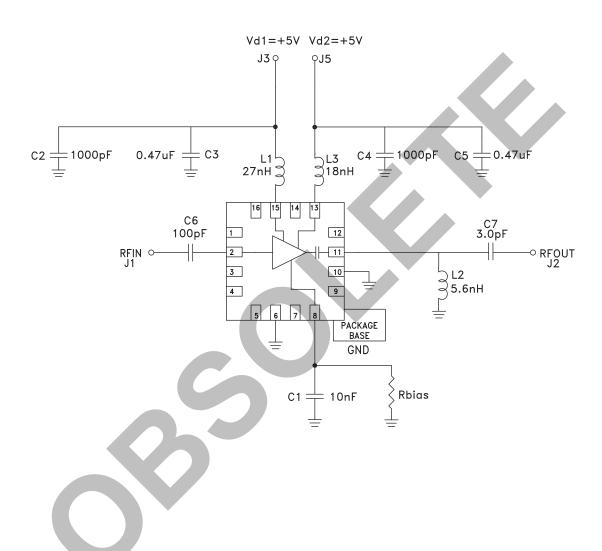
Evaluation PCB Ordering Information

Item		Content	Part Number
Evaluation PC	в	HMC618LP3E Evaluation PCB	117905-HMC618LP3E

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

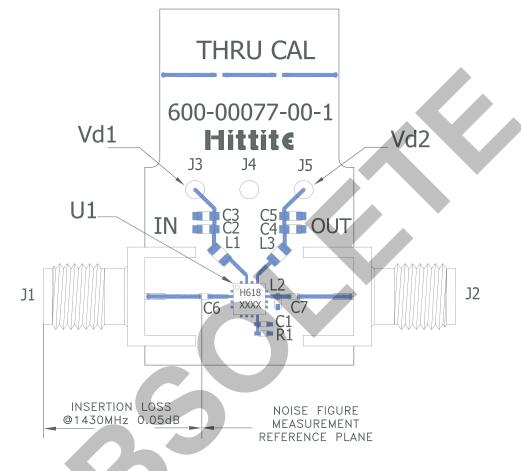
List of Materials for Evaluation PCB

Item	Description
J1, J2	PCB Mount SMA RF Connector
J3 - J5	DC Pin
C2, C4	1000 pF Capacitor, 0603 Pkg
C3, C5	0.47 µF Capacitor, Tantalum
L1	15 nH, Inductor, 0603 Pkg.
L3	6.8 nH, Inductor, 0603 Pkg.
C6	220 pF Capacitor, 0402 Pkg.
C1	10 nF Capacitor, 0402 Pkg.
R1	470 Ohm resistor, 0402 Pkg.
U1	HMC618LP3(E) Amplifier
PCB [2]	120586 Evaluation PCB


[1] Reference this number when ordering complete evaluation PCB

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Application Circuit, 1200 to 1700 MHz Tune


For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

GaAs SMT pHEMT LOW NOISE AMPLIFIER, 1.2 - 2.2 GHz

Evaluation PCB, 1200 to 1700 MHz Tune

Evaluation PCB Ordering Information

Item		Content	Part Number
Evaluation PC	СВ	HMC618LP3E Evaluation PCB	EVAL01-HMC618LP3E

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

List of Materials for Evaluation PCB

Item	Description
J1, J2	PCB Mount SMA RF Connector
J3 - J5	DC Pin
C1	10 nF Capacitor, 0402 Pkg.
C2, C4	1000 pF Capacitor, 0603 Pkg
C3, C5	0.47 µF Capacitor, 0603 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	3 pF Capacitor, 0402 Pkg.
L1	27 nH, Inductor, 0603 Pkg.
L2	5.6 nH, Inductor, 0603 Pkg.
L3	18 nH, Inductor, 0603 Pkg.
R1	470 Ohm resistor, 0402 Pkg.
U1	HMC618LP3(E) Amplifier
PCB [1]	120586 Evaluation PCB
[1] Circuit Board Mate	erial: Rogers 4350.