BOURNS®

- Designed for Complementary Use with the BD242 Series
- 40 W at 25°C Case Temperature
- 3 A Continuous Collector Current
- 5 A Peak Collector Current
- Customer-Specified Selections Available

This series is `Sd`]V\(\text{VA}/R_U\) not recommended for new designs.

(TOP VIEW)

2

TO-220 PACKAGE

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD241		55		
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD241A		70	V	
	BD241B	VCER	90		
	BD241C		115		
	BD241		45		
Collector-emitter voltage (I _C = 30 mA)	BD241A	V	60	V	
	BD241B	V_{CEO}	80		
	BD241C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current	I _C	3	Α		
Peak collector current (see Note 1)	I _{CM}	5	Α		
Continuous base current	Ι _Β	1	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	40	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3	P _{tot}	2	W		
Unclamped inductive load energy (see Note 4)	½Ll _C ²	32	mJ		
Operating junction temperature range	T _j	-65 to +150	°C		
Storage temperature range	T _{stg}	-65 to +150	°C		
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C		

- NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.32 W/°C.
 - 3. Derate linearly to 150°C $\,$ free air temperature at the rate of 16 mW/°C.
 - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA (see Note 5)	I _B = 0	BD241 BD241A BD241B BD241C	45 60 80 100			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = 55 \text{ V}$ $V_{CE} = 70 \text{ V}$ $V_{CE} = 90 \text{ V}$ $V_{CE} = 115 \text{ V}$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	BD241 BD241A BD241B BD241C			0.2 0.2 0.2 0.2	mA
I _{CEO}	Collector cut-off current	V _{CE} = 30 V V _{CE} = 60 V	I _B = 0 I _B = 0	BD241/241A BD241B/241C			0.3 0.3	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_C = 1 A$ $I_C = 3 A$	(see Notes 5 and 6)	25 10			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = 0.6 A	I _C = 3 A	(see Notes 5 and 6)			1.2	V
V_{BE}	Base-emitter voltage	V _{CE} = 4 V	I _C = 3 A	(see Notes 5 and 6)			1.8	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3	-		

NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			3.125	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_L = 20 \Omega$	$t_p = 20 \ \mu s, \ dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT $T_{CS631AH}$ $T_{C} = 25^{\circ}C$ $T_{C} = 300 \, \mu s, \, duty \, cycle < 2\%$ $T_{C} = 80^{\circ}C$ $T_{C} = 80^{\circ}C$

COLLECTOR-EMITTER SATURATION VOLTAGE

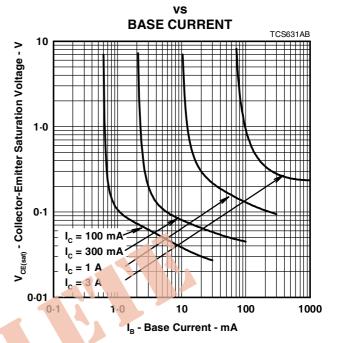


Figure 2.

I_C - Collector Current - A

BASE-EMITTER VOLTAGE

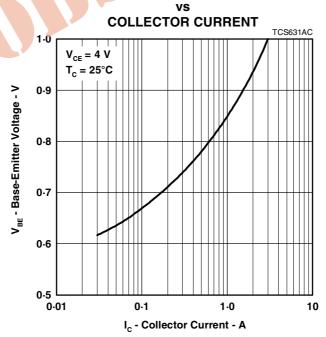
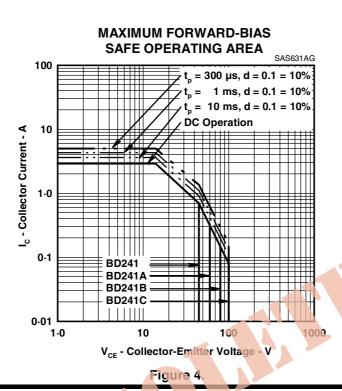
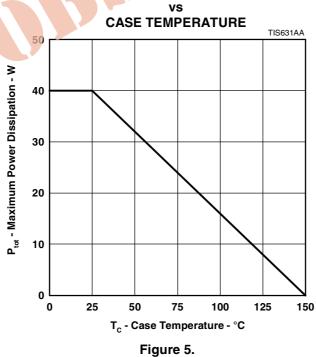



Figure 3.


PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

PRODUCT INFORMATION