LT8698S/LT8698S-1 5V 3A, 42V Input USB Charger with Cable Drop Compensation and Data Line Protection

DESCRIPTION

Demonstration circuit 2688A is a USB charger designed to power the 5V USB V_{BUS} rail with up to 3A from an input voltage as high as 42V. The DC2688A circuit features the LT[®]8698S/LT8698S-1, which is a compact, high efficiency, high speed synchronous monolithic step-down switching regulator which features the second-generation Silent Switcher[®] technology that minimizes EMI and reduces PCB layout sensitivity. The LT8698S/LT8698S-1 supports a wide variety of portable device charger profiles including USB BC 1.2 CDP, DCP, and SDP as well as common proprietary charger profiles, all of which can be easily evaluated using the DC2688A demo board. The LT8698S/LT8698S-1 also features high speed USB 2.0 compliant data line switches, robust data line protection, and programmable cable drop compensation which maintains accurate 5V V_{BUS} regulation even when USB sockets are separated from the LT8698S/LT8698S-1 by a long cable. These features make the LT8698S/LT8698S-1 well suited for automotive USB host applications.

There are two assembly versions. The DC2688A-A features the LT8698S, while the DC2688A-B features the LT8698S-1. The difference is that the LT8698S includes V_{IN} hot loop capacitors inside the IC package for improved EMI/EMC performance, while the LT8698S-1 does not include these capacitors.

DEMO BOARD INFORMATION

The main power stage of the DC2688A demo board operates at 2MHz switching frequency by default to minimize solution size. The jumper JP5 on the demo board determines the configuration of the SYNC pin of the LT8698S/ LT8698S-1. Setting the jumper JP5 to "FCM W/SSM" location ties SYNC pin to INTV_{CC} which enables forced continuous mode with spread-spectrum modulation for improved EMI performance. Moving JP5 to "PSK" location enables the pulse-skipping mode which improves light load efficiency by reducing the switching frequency at light load and reducing $V_{\rm IN}$ quiescent current between pulses. To synchronize to an external clock, move JP5 to "FCM W/O SSM or SYNC" location and apply external clock on the EXT_SYNC turret.

Figure 1 shows a functional Block Diagram of the DC2688A demo board.

The DC2688A demo board includes a re-timer IC USB2422 whose purpose is to ensure that USB high speed signaling eye pattern can be measured at test plane 2 as defined by USB 2.0 specifications, and that such signaling through the LT8698S/LT8698S-1's USB data line switches conforms to template 1 eye pattern requirements. Please note that a re-timer IC is not necessary in actual applications as the USB host controller will reside on the same PCB board as the LT8698S/LT8698S-1.

The DC2688A demo board includes three headers JP2, JP3, and JP4, which are used for manual control of the LT8698S/LT8698S-1's tristate input pins SEL1, SEL2, and SEL3. Although these select pins are intended to interface with a USB host microcontroller, majority of the functions of the LT8698S/LT8698S-1 may be evaluated by simply using the manual selection of the SEL1, SEL2, and SEL3 headers on the DC2688A board.

The DC2688A demo board is 3.5-inch × 3.5-inch in size and has four copper layers with 2oz copper on the outer layers and 1oz copper on the inner layers. The DC2688A has controlled impedance transmission lines placed for high speed differential USB data signaling, in between the USB-B receptacle, the USB2422 re-timer IC, the LT8698S/ LT8698S-1 data line switches, and the USB-A receptacle, with a differential characteristic impedance of 90 Ω .

The default rated maximum load current of the DC2688A is 2.4A, with a default R_{SENSE} resistor value of 10m Ω . However, the DC2688A circuit can supply 3A load current with a R_{SENSE} resistor value of 8m Ω .

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

DESCRIPTION

Figure 2 shows the efficiency of the DC2688A at 12V and 24V input in pulse-skipping mode of operation (input from V_{IN} turret pin, and R_{SENSE} resistor is $8m\Omega$)

The DC2688A has an input EMI filter installed. The EMI performance of the demo board DC2688A-A (with EMI filter) is shown in Figure 3 and Figure 4. The red lines in Figure 3 are CISPR 25 class 5 limits for peak detector. The EMI performance of DC2688A-B (with EMI filter) is shown in Figure 5 and Figure 6. To achieve EMI performance as shown in Figure 3 through Figure 6, the input EMI filter is required, and the input voltage should be applied at V_{EMI} terminal.

As shown in the dashed box in Figure 1 functional block diagram, the DC2688A demo board may also be optionally used in conjunction with the Linduino[®] microcontroller board DC2026C and a touchscreen display shield. The DC2688A demo board includes the AD5593R, which is an 8-channel ADC/GPIO with on-chip reference and I²C interface. The AD5593R monitors several inputs from the LT8698S/LT8698S-1, communicates with the Linduino board through the I²C interface, and controls the SEL1, SEL2, and SEL3 tristate input pins.

The LT8698S/LT8698S-1 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this manual for DC2688A.

DESCRIPTION

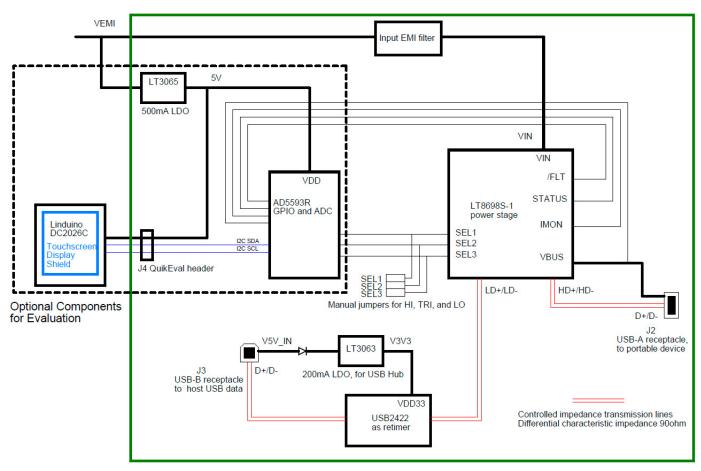


Figure 1. DC2688A Demo Board Functional Block Diagram

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{IN}	Input Supply Range		6.0		42	V
V _{BUS}	USB 5V Bus Voltage	Without Cable Drop Compensation	4.8	5	5.2	V
	USB 5V Bus Voltage	With Cable Drop Compensation			6.2	V
I _{BUS}	Maximum Output Current	$R_{SENSE} = 10m\Omega$	2.4			A
	Maximum Output Current	$R_{SENSE} = 8m\Omega$	3.0			A
f _{SW}	Switching Frequency		1.95	2	2.05	MHz
EFE	Efficiency at DC	V _{IN} = 12V, I _{BUS1} = 1.5A		92.7		%

TYPICAL PERFORMANCE CHARACTERISTICS

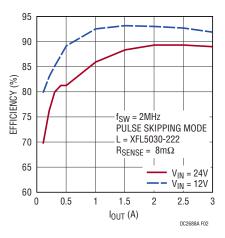


Figure 2. Efficiency vs Load Current at 2MHz Switching Frequency (Input from V_{IN} Terminal)

TYPICAL PERFORMANCE CHARACTERISTICS

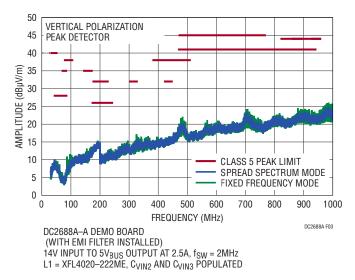
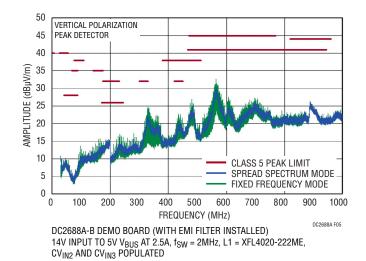



Figure 3. DC2688A-A Demo Circuit EMI Performance in CISPR 25 Radiated Emissions Test, Peak Detector

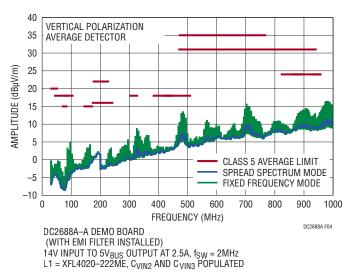


Figure 4. DC2688A-A Demo Circuit EMI Performance in CISPR 25 Radiated Emissions Test, Average Detector

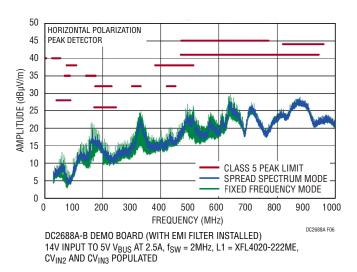


Figure 6. DC2688A-B Demo Circuit EMI Performance in CISPR 25 Radiated Emissions Test, Horizontal Polarization

EVALUATE DC2688A POWER STAGE

Demonstration circuit 2688A is easy to set up to evaluate the performance of the LT8698S/LT8698S-1. Refer to Figure 7 for proper measurement equipment setup and follow the procedure below.

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip directly across the VB_{US} and GND terminals. See Figure 7 and Figure 8 for proper measurement technique.

- 1. Check that JP6 and JP7 are placed on the OFF position to ensure that the on-board LDOs are disabled.
- 2. Place JP2, JP3, and JP4 all on the "Z" position, which puts the LT8698S/LT8698S-1 in V_{BUS} only mode of operation with V_{BUS} in regulation.
- 3. With power off, connect the input power supply to V_{EMI} and GND turrets. If the EMI/EMC performance is not important, connect the input power supply to V_{IN} and GND turrets.
- 4. With power off, connect the loads from V_{BUS} to GND.
- 5. Check that JP1 EN jumper is placed on the ON position.
- 6. Turn on the power at the input.

NOTE: Make sure that the input voltage never exceeds 42V.

7. Check for proper output voltages: V_{BUS} voltage should be between 5V to 6.1V and depends on the cable drop

compensation settings, and D11 LED indicator lights up in green. For more information on cable drop compensation, please refer to LT8698S/LT8698S-1 data sheet.

NOTE: If there is no output, temporarily disconnect the load to make sure that the load is not set too high.

- 8. Once the proper output voltages are established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
- 9. An external clock can be added to the EXT_SYNC terminal when SYNC function is used (JP5 on the FCM W/O SSM OR SYNC position). Please make sure that R37 resistor should be chosen to set the LT8698S/LT8698S-1 switching frequency equal to or below the lowest synchronization frequency. JP5 can also set the LT8698S/LT8698S-1 in spread-spectrum mode (JP5 on the FCM W/SSM position) or pulse skipping mode (JP5 on the PSK position).
- 10. Check STATUS pin voltage on the STATUS turret in relation to the I_{BUS} load current. If I_{BUS} load is lower than 100mA typically, STATUS pin should be low, and the STATUS LED lights up in yellow; if I_{BUS} load is higher than 130mA typically, STATUS pin should be high, and the STATUS LED does not light up.
- 11. Check I_{MON} point voltage, in relation to I_{BUS} load current. Measure the voltage on the IMON turret: the IMON voltage should be equal to 0.46V/A in proportion to the I_{BUS} load current.

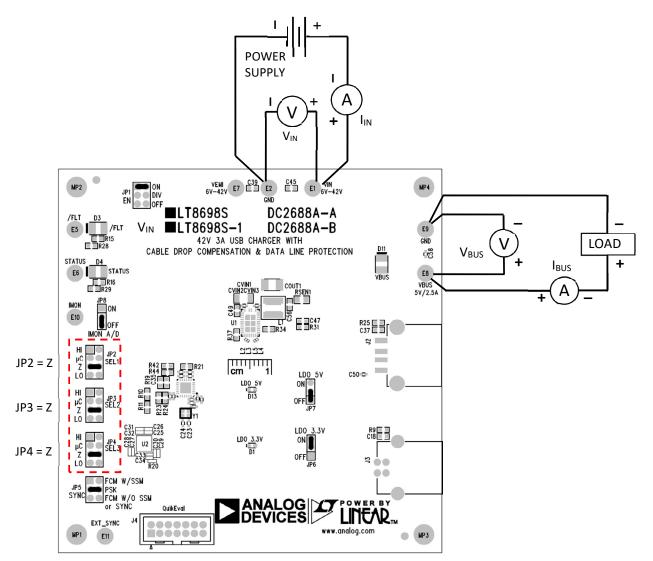


Figure 7. Proper Measurement Equipment Setup for Evaluating the DC2688A-B Power Stage

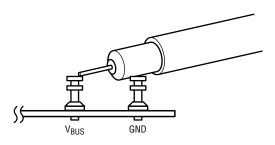


Figure 8. Measuring Output Ripple

EVALUATE USB CHARGER PROFILES

The LT8698S/LT8698S-1 supports several common USB charger profiles, and the DC2688A demo board is easy to set up to evaluate these common charger profiles.

Refer to Figure 9 for proper measurement equipment setup and follow the procedure below.

- 1. Check that JP6 and JP7 are placed on the OFF position, to ensure that the on-board LDOs are disabled.
- Select JP2, JP3, and JP4 jumpers at appropriate locations based on the desired charger profile and SEL pin lookup table in the LT8698S/LT8698S-1 data sheet. Table 1 shows several popular USB charger profiles available in the LT8698S/LT8698S-1. Refer to LT8698S/LT8698S-1 data sheet for further information about USB charger profiles.
- 3. With power off, connect the input power supply to V_{EMI} and GND turrets. If the EMI/EMC performance is not important, connect the input power supply to VIN and GND turrets.
- 4. Check that JP1 EN jumper is placed on the ON position.

5. Turn on the power at the input.

NOTE: Make sure that the input voltage never exceeds 42V.

- 6. Check for proper output voltages: $V_{BUS} = 5V$, and D11 LED indicator lights up in green.
- 7. Attach a portable device to the type A socket of the DC2688A demo board.
- 8. Observe the battery charging activity on the portable device.
- Observe charging current by measuring the voltage on IMON turret: the IMON voltage should be equal to 0.46V/A in proportion to the I_{BUS} load current.

Table 1. Common USB Charger Profiles and CorrespondingSEL Pins

	SEL1	SEL2	SEL3	CHARGER PROFILE DESCRIPTION
State 21	LOW	TRI	HIGH	USB BC 1.2 DCP Profile
State 22	TRI	TRI	HIGH	2.0A Vendor Charger Profile
State 24	LOW	HIGH	HIGH	2.4A Vendor Charger Profile

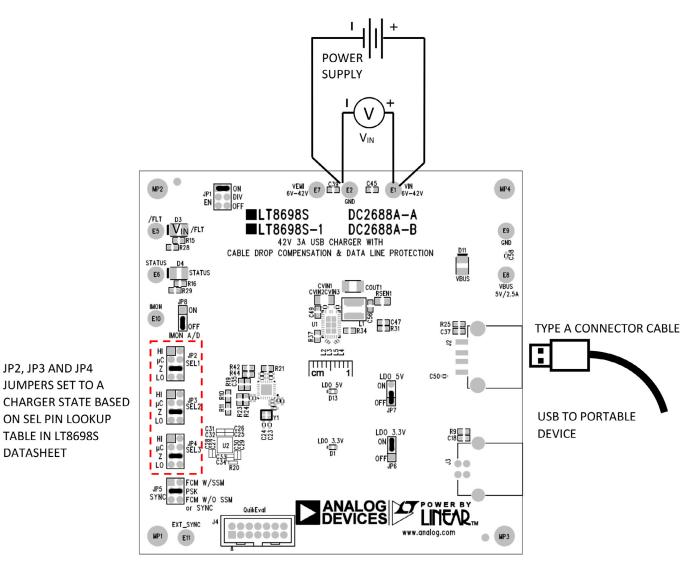


Figure 9. Proper Measurement Equipment Setup for Evaluating Common USB Charger Profiles

EVALUATE USB BC 1.2 CDP APPLICATIONS

The LT8698S/LT8698S-1 integrates necessary hardware to support USB BC 1.2 Charging Downstream Port (CDP) charger profile which allows compliant devices to draw high current of up to 1.5A from V_{BUS} while simultaneously communicating with the host at USB high speed of 480Mbps.

Refer to Figure 10 for proper measurement equipment setup and follow the procedure below.

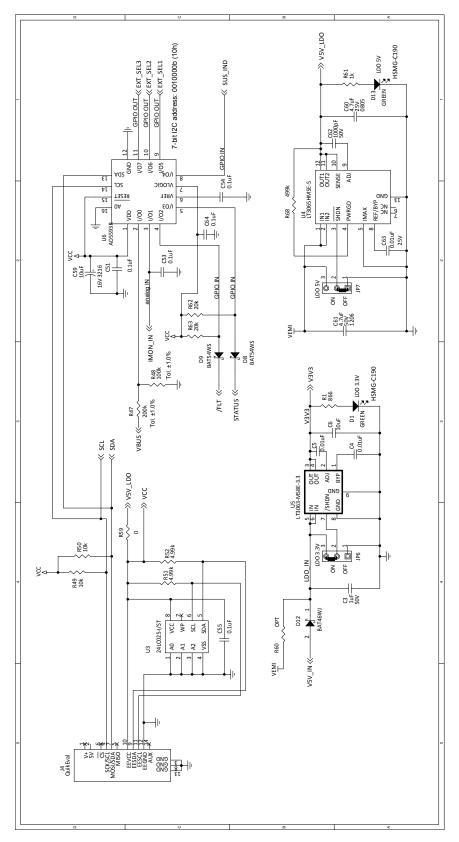
- 1. Check that JP6 is placed on the ON position to ensure that the 3.3V LDO is enabled.
- 2. Select JP2 and JP3 to be in the LOW position and select JP4 to be in the LOW or TRI position. Select JP4 SEL3 in the LOW position sets the LT8698S/LT8698S-1 in select state 0 which performs the CDP sequence with the data line switches closed and without termination. Select JP4 SEL3 in the TRI position sets the LT8698S/LT8698S-1 in select state 1 which performs the CDP sequence with the data line switches open and 20k termination resistors tied from HD+ and HD- to GND. Both select 0 and select 1 are valid state in which to start the CDP sequence. For further information about the CDP sequence, please refer to the LT8698S/LT8698S-1 data sheet.
- 3. With power off, connect the input power supply to V_{EMI} and GND turrets. If the EMI/EMC performance is not important, connect the input power supply to V_{IN} and GND turrets.
- 4. Check that JP1 EN jumper is placed on the ON position.
- 5. Turn on the power at the input.

NOTE: Make sure that the input voltage never exceeds 42V.

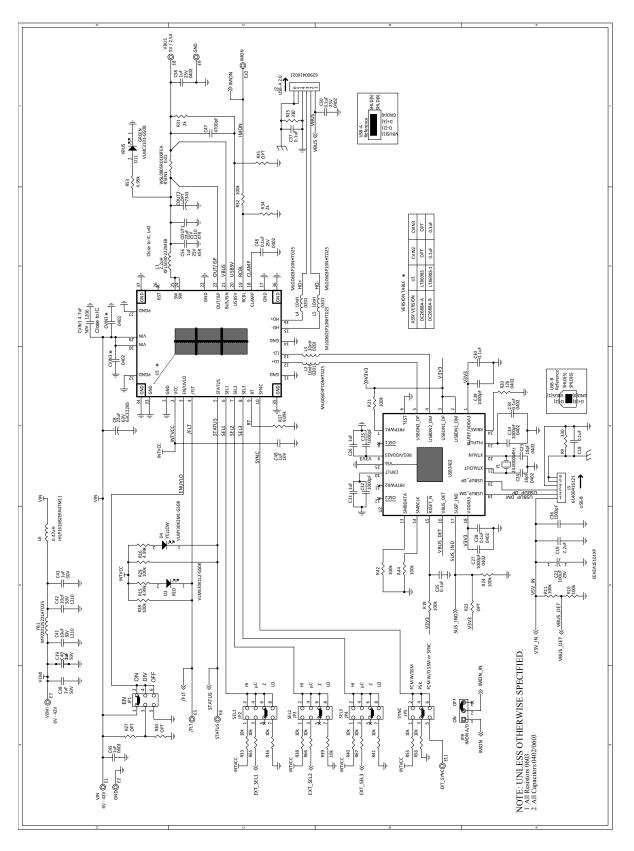
- 6. Check for proper output voltages: $V_{BUS} = 5V$, and D11 LED indicator lights up in green.
- 7. Plug a USB cable connecting to a PC with type B connector to the type B socket of the DC2688A demo board and connect the USB cable to a computer.
- Check the STATUS pin voltage and observe STATUS yellow LED is on, meaning STATUS pin is low. At this point, the LT8698S/LT8698S-1 puts a 100µA current source on the D+, asserts STATUS low and waits for a portable device to attach to the USB socket.
- 9. Attach a CDP compliant portable device to the type A socket of the DC2688A demo board.
- 10. Observe the CDP negotiation between the portable device and the computer. You may monitor the voltage waveforms on STATUS, V_{BUS}, IMON point, D+, and D- during this CDP negotiation. Observe the USB data connection between portable device and the PC as manifested by the portable device showing up in the PC in "devices and driver" or "this PC", and the PC may be able to access data stored in the portable device.
- 11. To restart another CDP session, perform the following steps:
 - a. Unplug the portable device from the type A socket.
 - b. Place the JP1 EN jumper to OFF position and then place it back to ON position. Cycling the EN/UV pin of the LT8698S/LT8698S-1 resets the CDP state machine which is necessary in order to restart another CPD sequence. Alternatively, the CDP state machine can be reset by setting LT868S to a non-CDP state (any select state other than state 0, state 1, and state 2) and coming back to state 0 or state 1. Note: in an actual CDP application, a USB host microcontroller can detect a portable device detach and reset the DP machine by controlling the SEL pin(s).
 - c. Repeat from step 8.

Figure 10. Proper Measurement Equipment Setup for Evaluating USB CDP Charger Profiles

DEMO MANUAL DC2688A


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Require	ed Circu	uit Components		l	
1	3	C3, C39, C45	CAP., 1µF, X5R, 50V, 10%, 0603	TDK, CGA3E3X5R1H105K080AB	
2	3	C4, C5, C63	CAP., 0.01µF, X5R, 25V, 10%, 0603	TDK, C1608X7R1E103K080AA	
3	1	C6	CAP., 10μF, X5R, 10V, 10%, 0805	MURATA, GRM21BR61A106KE19L	
4	8	C18, C35, C37, C51, C53, C54, C55, C64	CAP., 0.1µF, X7R, 25V, 10%, 0603	TDK, C1608X7R1E104K080AA	
5	1	C19	CAP., 2.2µF, X5R, 25V, 10%, 0603	MURATA, GRM188R61E225KA12D	
6	1	C22	CAP., 100µF, ALUM. ELECT., 25V, 20%, 6.3mm × 7.7mm SMD, D8	PANASONIC, EEHZA1E101XP	
7	2	C23, C24	CAP., 18pF, NPO, 25V, 10%, 0402	AVX, 04023A180KAT2A	
8	5	C25, C27, C29, C32, C34	CAP., 1000pF, X7R, 25V, 10%, 0402	AVX, 04023C102KAT2A	
9	2	C26, C31	CAP., 1µF, X5R, 16V, 10%, 0402	TDK, C1005X5R1C105K050BC	
10	5	C28, C30, C33, C48, C50	CAP., 0.1µF, X5R, 25V, 10%, 0402	AVX, 04023D104KAT2A	
11	1	C36	CAP., 1000pF, COG, 25V, 10%, 0603	AVX, 06033A102KAT2A	
12	1	C47	CAP., 4700pF, X7R, 25V, 10%, 0603	MURATA, GRM188R71E472KA01D	
13	1	C49	CAP., 1µF, X5R, 10V, 10%, 0603	MURATA, GRM188R61A105KA61D	
14	1	C56	CAP., 1µF, X5R, 25V, 10%, 0603	MURATA, GRM188R61E105KA12D	
15	1	C58	CAP., 1µF, X5R, 25V, 10%, 0402	MURATA, GRM155R61E105KA12D	
16	1	C59	CAP, 10μF, TANT., 16V, 10%, 3216, 1Ω, TPSA	AVX, TPSA106K016R1000	
17	1	C60	CAP, 4.7µF, X7R, 25V, 10%, 0805	MURATA, GRM21BR71E475KA73L	
18	2	C61, CVIN1	CAP, 4.7µF, X7R, 50V, 10%, 1206	MURATA, GRM31CR71H475KA12L	
19	1	C62	CAP.,1000pF, COG, 50V, 5%, 0603	MURATA, GRM1885C1H102JA01D	
20	1	COUT1	CAP., 22µF, X7R, 25V, 20%, 1210	MURATA, GRM32ER71E226ME15L	
21	2	D1, D13	LED, GREEN, DIFFUSED, 0603	BROADCOM, HSMG-C190	
22	1	D3	LED, RED, NON-DIFFUSED, 1208, PLCC-2,	VISHAY, VLMS30K1L2-GS08	
23	1	D4	LED, YELLOW, NON-DIFFUSED, 1208, PLCC-2,	VISHAY, VLMY30K2M1-GS08	
24	2	D8, D9	DIODE, SCHOTTKY, 30V, 200mW, SOD-323	DIODES INC., BAT54WS-7-F	
25	1	D11	LED, GREEN, NON-DIFFUSED, 3.0mm × 2.2mm SMD, PLCC-2,	VISHAY, VLMC3101-GS08	
26	1	D12	DIODE, SCHOTTKY, 100V, 250mA, SOD-323F, AEC-Q101	NEXPERIA, BAT46WJ	
27	1	J2	CONN., USB-A 2.0, RCPT, FEMALE, 4-POS, 1PORT, R/A HORZ. SMT	WURTH ELEKTRONIK, 62900416021	
28	1	J3	CONN., USB-B, RCPT, FEMALE, 4POS, 1PORT, R/A HORZ, THT	WURTH ELEKTRONIK, 61400416121	
29	2	JP1, JP5	CONN., HDR., MALE, 2×3, 2mm, VERT, STR, THT	SAMTEC, TMM-103-02-L-D	
30	3	JP2, JP3, JP4	CONN., HDR, MALE, 2×4, 2mm, VERT, STR, THT	WURTH ELEKTRONIK, 62000821121	
31	3	JP6, JP7, JP8	CONN., HDR, MALE, 1×3, 2mm, VERT, STR, THT	WURTH ELEKTRONIK, 62000311121	
32	1	L1	IND., 2.2µH, PWR. SHIELDED, 20%, 5.48mm × 5.28mm, AEC-Q200	COILCRAFT, XFL5030-222MEB	
33	4	L2, L3, L4, L5	IND., 10nH, HIGH-Q, 3%, 0201, AEC-Q200	TDK, MLG0603P10NHTD25	
34	1	R1	RES., 866Ω, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW0603866RFKEA	
35	2	R9, R25	RES., 330Ω, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW0603330RFKEA	
36	11	R10, R11, R19, R21, R24, R28, R29, R32, R42, R44, R48	RES., 100k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW0603100KFKEA	


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
37	5	R15, R16, R51, R52, R53	RES., 4.99k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06034K99FKEA	
38	1	R20	RES., 12k, 1%, 1/16W, 0402	VISHAY, CRCW040212K0FKED	
39	2	R31, R34	RES., 2k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06032K00FKEA	
40	13	R33, R36, R38, R39, R40, R41, R49, R50, R55, R56, R65, R66, R67	RES., 10k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW060310K0FKEA	
41	1	R37	RES., 9.09k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06039K09FKEA	
42	1	R47	RES., 200k, 1%, 1/10W, 0603	VISHAY, CRCW06039K09FKEA	
43	1	R59	RES., 0Ω, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06030000Z0EA	
44	1	R61	RES., 1k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06031K00FKEA	
45	2	R62, R63	RES., 20k, 1%, 1/10W, 0603	VISHAY, CRCW060320K0FKEA	
46	1	R68	RES., 499k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06031K00FKEA	
47	1	RSEN1	RES., 0.01Ω, 1%, 1/8W, 0805, SENSE, AEC-Q200	VISHAY, WSL0805R0100FEA	
48	1	U2	IC, 2-PORT USB 2.0 HUB CONTROLLER, SQFN-24	MICROCHIP, USB2422T-I/MJ	
49	1	U3	IC, MEMORY, EEPROM, 2Kb (256×8), TSSOP-8, 400kHz	MICROCHIP, 24LC025	
50	1	U4	IC, 500mA LDO LINEAR REGULATOR, MSOP-12	ANALOG DEVICES, LT3065HMSE-5	
51	1	U5	IC, 200mA LDO LINEAR REGULATOR, MSOP-8	ANALOG DEVICES, LT3063EMS8E-3.3#PBF	
52	1	U6	IC, ADC/DAC, 8-CH, 12-BIT, LFCSP-16	ANALOG DEVICES, AD5593RBCPZ	
53	1	Y1	CRYSTAL, 24.0000MHz, 6pF, 2.0mm × 1.6mm SMD	MURATA, XRCGB24M000F3M00R0	
C2688	A-A Ve	rsion Specific Components	1		
1	1	U1	IC, USB CHARGER, LQFN-32	ANALOG DEVICES, LT8698SEV#PBF	
C2688	A-B Ve	rsion Specific Components			
1	1	U1	IC, USB CHARGER, LQFN-32	ANALOG DEVICES, LT8698SEV-1#PBF	
dditio	nal Den	no Board Circuit Components			
1	1	C8	CAP., 22µF, ALUM. ELECT., 63V, 20%, 6.3mm × 7.7mm, CE-BS	SUN ELECTRONIC INDUSTRIES CORF 63CE22BS	
2	3	C38, C40, C43	CAP., 1µF, X5R, 50V, 10%, 0603	TDK, CGA3E3X5R1H105K080AB	
3	2	C41, C42	CAP., 10µF, X5R, 50V, 10%, 1210	MURATA, GRM32ER61H106KA12L	
4	0	COUT2	CAP., OPTION, 7343		
5	2	CINV2, CINV3	CAP., 0.1µF, X7R, 50V, 10%, 0402	MURATA, GRM155R71H104KE14J	
6	1	FB1	IND., 220Ω @ 100MHz, FERRITE BEAD, 25%, 3A, 40mΩ, 0805, AEC-Q200	TDK, MPZ2012S221ATD25	
7	1	L6	IND., 0.47μH, PWR., 20%, 7A, 16mΩ, 1616BZ, IHLP-11 SERIES	VISHAY, IHLP1616BZERR47M11	
8	0	R23, R27, R30, R35, R60	RES., OPTION, 0603		
9	1	U4	IC, MEMORY, EEPROM, 2Kb (256x8), TSSOP-8, 400kHz	MICROCHIP, 24LC025-I/ST	
ardwa	re for C	Demo Board Only	·	•	
1	9	E1, E2, E5, E6, E7, E8, E9, E10, E11	TEST POINT, TURRET, 0.094"	MILL-MAX, 2501-2-00-80-00-00-07-0	
2	1	J4	CONN., SHROUDED HDR, MALE, 2×7, 2mm, VERT, STR, THT	MOLEX, 87831-1420	
3	4	MP1, MP2, MP3, MP4	STANDOFF, NYLON, SNAP-ON, 0.375"	KEYSTONE, 8832	
4	7	XJP1, XJP2, XJP3, XJP4, XJP5, XJP6, XJP7	CONN., SHUNT, FEMALE, 2-POS, 2mm	SAMTEC, 2SN-BK-G	
		XJP8	CONN., SHUNT, FEMALE, 2-POS, 2mm	WURTH ELEKTRONIK, 60800213421	

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Downloaded from Arrow.com.

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer agrees to return to ADI the Evaluation Board that time. LINITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

02/21 www.analog.com © ANALOG DEVICES, INC. 2021