BD243, BD243A, BD243B, BD243C NPN SILICON POWER TRANSISTORS

BOURNS®

 Designed for Complementary Use with the BD244 Series

• 65 W at 25°C Case Temperature

6 A Continuous Collector Current

10 A Peak Collector Current

Customer-Specified Selections Available

 "-S" Suffix Added to Part Number Indicates RoHS Compliance*

TO-220 PACKAGE (TOP VIEW)

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD243		55		
Collector-emitter voltage (R_{BE} = 100 Ω)	BD243A		70	v	
	BD243B	V _{CER}	90	٧	
	BD243C		115		
	BD243	5	45		
Collector-emitter voltage (I _C = 30 mA)	BD243A	V	60	V	
	BD243B	V_{CEO}	80		
	BD243C		100		
Emitter-base voltage		V_{EBO}	5	V	
Continuous collector current			6	Α	
Peak collector current (see Note 1)			10	Α	
Continuous base current			3	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			65	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3	3)	P _{tot}	2	W	
Unclamped inductive load energy (see Note 4)		½LI _C ²	62.5	mJ	
Operating junction temperature range		T _j	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds		T_L	250	°C	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.52 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

electrical characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNI	
				BD243	45				
Collector-emitter	$V_{(BR)CEO}$ Collector-emitter breakdown voltage $I_C = 30 \text{ mA}$ (see Note 5)	I = 20 m/		BD243A	60			v	
V(BR)CEO		breakdown voltage	wn voitage I -	$I_B = 0$	BD243B	80			v
		(See Note 5)		BD243C	100				
		V _{CE} = 55 V	V _{BE} = 0	BD243			0.4		
	Collector-emitter	$V_{CE} = 70 V$	$V_{BE} = 0$	BD243A			0.4		
I _{CES}	cut-off current	$V_{CE} = 90 V$	$V_{BE} = 0$	BD243B			0.4	m/	
		V _{CE} = 115 V	$V_{BE} = 0$	BD243C			0.4		
	Collector cut-off	V _{CE} = 30 V	I _B = 0	BD243/243A			0.7	m/	
ICEO	current	$V_{CE} = 60 \text{ V}$	$I_B = 0$	BD243B/243C			0.7	1117	
1	Emitter cut-off	V - 5V	1 - 0				1	m/	
I _{EBO}	current	V _{EB} = 5 V	$I_C = 0$				'	1117	
h	Forward current	V _{CE} = 4 V	I _C = 0.3 A	(see Notes 5 and 6)	30				
h _{FE}	transfer ratio	V _{CE} = 4 V	$I_C = 3 A$		15				
V	Collector-emitter	Ι – 1 Δ	I - 6A	(see Notes 5 and 6)			1.5	V	
V _{CE(sat)}	saturation voltage $I_B = 1 A$ $I_C =$	$I_C = 6 A$	(See Notes 5 and 6)			1.5	v		
W	Base-emitter	V - 4V	l – 6A	6 A (see Notes 5 and 6)			2	V	
V _{BE}	voltage	V _{CE} = 4 V	V $I_C = 6 A$ (see Notes 5 and 6)				\ \ \		
h	Small signal forward	V - 10 V	I - 0.5.A	f = 1 kHz	20				
h _{fe}	current transfer ratio	V _{CE} = 10 V	$I_{\rm C} = 0.5 {\rm A}$	I = I KFIZ	20				
lh l	Small signal forward	V 10 V	V I - 0.5.A	f = 1 MHz	3				
h _{fe}	current transfer ratio	V _{CE} = 10 V	$I_{\rm C} = 0.5 {\rm A}$	I = I IVINZ	3				

NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNI
$R_{\theta JC}$	Junction to case thermal resistance			1.92	°C/\
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/\

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †		MIN	TYP	MAX	UNI	
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	I _{B(off)} = -0.1 A		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 V$	$R_L = 20 \Omega$	t_p = 20 μs , $dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN

vs COLLECTOR CURRENT

Figure 1.

I_c - Collector Current - A

COLLECTOR-EMITTER SATURATION VOLTA

Figure 2.

BASE-EMITTER VOLTAGE vs

Figure 3.

PRODUCT INFORMATION

JUNE 1973 - REVISED NOVEMBER 2012 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

Figure 5.

PRODUCT INFORMATIO

JUNE 1973 - REVISED NOVEMBER 20 Specifications are subject to change without not