2.1Ω On Resistance, $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$, iCMOS SPDT Switch

Data Sheet

FEATURES

2.1Ω on resistance

0.5Ω maximum on-resistance flatness at $25^{\circ} \mathrm{C}$
Up to 390 mA continuous current
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required 3 V logic-compatible inputs
Rail-to-rail operation
8 -lead MSOP and 8 -lead, $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ LFCSP

APPLICATIONS

Automatic test equipment
 Data acquisition systems
 Battery-powered systems
 Relay replacements
 Sample-and-hold systems
 Audio signal routing
 Video signal routing
 Communication systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 0 INPUT. 嵩
Figure 1. 8-Lead LFCSP (CP-8-4)

SWITCHES SHOWN FOR A LOGIC oinput.
Figure 2. 8-Lead MSOP (RM-8)

GENERAL DESCRIPTION

The ADG1419 is a monolithic i CMOS $^{\circ}$ device containing a single-pole/double-throw (SPDT) switch. An EN input on the LFCSP is used to enable or disable the device. When disabled, all channels are switched off.

The industrial CMOS (iCMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. The iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights. 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
+12 V Single Supply 4
± 5 V Dual Supply 5
Continuous Current Per Channel, S or D 6
REVISION HISTORY
6/2016-Rev. 0 to Rev. A
Changes to Table 7 8
Deleted Table 9; Renumbered Sequentially 8
Change to Figure 6 9
Absolute Maximum Ratings 7
Thermal Resistance 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics. 9
Test Circuits 12
Terminology 14
Outline Dimensions 15
Ordering Guide 15

10/2009—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (oN)	$\begin{aligned} & 2.1 \\ & 2.4 \\ & 0.05 \\ & 0.2 \\ & 0.4 \\ & 0.5 \\ & \hline \end{aligned}$	2.8 0.25 0.6	$V_{D D}$ to $V_{S S}$ 3.2 0.3 0.65	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 0.6 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 100 \\ & \pm 100 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 24 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current, Inlo or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	130			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	155	190	220	ns max	$\mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}$; see Figure 25
ton (EN)	85			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	110	125	140	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 27
toff (EN)	115			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}$
	140	160	180	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 27
Break-Before-Make Time Delay, t_{D}	15			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
				ns min	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{52}=10 \mathrm{~V}$; see Figure 26
Charge Injection	-16			pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ $\text { see Figure } 28$
Off Isolation	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 29
Channel-to-Channel Crosstalk	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 30
Total Harmonic Distortion Plus Noise (THD + N)	0.016			\% typ	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz ; see Figure 32
-3 dB Bandwidth	135			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 31
Insertion Loss	0.16			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 31
C_{5} (Off)	19			pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
$C_{\text {d }}$ (Off)	44			pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	114			pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$

ADG1419

${ }^{1}$ Guaranteed by design, not subject to production test.

+12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 4 \\ & 4.6 \\ & 0.08 \\ & 0.25 \\ & 1.2 \\ & 1.5 \end{aligned}$	5.5 0.3 1.75	0 V to V_{DD} 6.2 0.35 1.9	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 22 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, lo (Off) Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.2 \\ & \pm 0.6 \\ & \pm 0.2 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 100 \\ & \pm 100 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; see Figure } 24 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition ton (EN) toff (EN) Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation	$\begin{aligned} & 200 \\ & 255 \\ & 145 \\ & 190 \\ & 130 \\ & 170 \\ & 55 \\ & \\ & 13 \\ & -60 \end{aligned}$	$\begin{aligned} & 265 \\ & 220 \\ & 205 \end{aligned}$	370 245 220 33	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see } \\ & \text { Figure } 29 \end{aligned}$

${ }^{1}$ Guaranteed by design, not subject to production test.
± 5 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
		6.2	$V_{\text {DD }}$ to $V_{S S}$	V	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 22
On Resistance, Ron	4.5			Ω typ	
	5.2		7	Ω max	$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.1			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.3	0.35	0.4	Ω max	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
On-Resistance Flatness, Rflat (on)	1.3	1.85	2	$\begin{aligned} & \Omega \text { typ } \\ & \Omega \text { max } \end{aligned}$	
	1.6				
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 0.1				$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 23 \end{aligned}$
		+2		nA typ	
	± 0.5		± 75	nA max nA typ	$V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
Drain Off Leakage, l_{D} (Off)	± 0.1				$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
	± 0.6	± 3	± 100	nA max	
Channel On Leakage, ID, Is (On)	$\pm 0.1$$\pm 1$			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 24
		± 3	± 100	nA max	
DIGITAL INPUTS					
Input High Voltage, V ${ }_{\text {INH }}$			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$	0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, CIN	4			pF typ	

${ }^{1}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL¹					
± 15 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
8 -Lead MSOP ($\left.\theta_{\mathrm{JA}}=206^{\circ} \mathrm{C} / \mathrm{W}\right)$	215	135	80	mA maximum	
8 -Lead LFCSP $\left(\theta_{\mathrm{JA}}=50.8^{\circ} \mathrm{C} / \mathrm{W}\right)$	390	215	100	mA maximum	
+12 V Single Supply					$\mathrm{V}_{\text {DD }}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
8 -Lead MSOP ($\left.\theta_{\text {JA }}=206^{\circ} \mathrm{C} / \mathrm{W}\right)$	175	115	70	mA maximum	
8 -Lead LFCSP ($\left.\theta_{\mathrm{JA}}=50.8^{\circ} \mathrm{C} / \mathrm{W}\right)$	320	185	95	mA maximum	
$\pm 5 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
8 -Lead MSOP ($\mathrm{J}_{\mathrm{JA}}=206^{\circ} \mathrm{C} / \mathrm{W}$)	165	110	70	mA maximum	
8 -Lead LFCSP $\left(\theta_{\mathrm{JA}}=50.8^{\circ} \mathrm{C} / \mathrm{W}\right)$	310	180	95	mA maximum	

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty-Cycle Maximum)	
8-Lead MSOP (4-Layer Board)	400 mA
8-Lead LFCSP	600 mA
Continuous Current per Channel, S or D	Data in Table $4+15 \% \mathrm{~mA}$
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb Free	$260^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 6. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{J}}$	Unit
8-Lead MSOP (4-Layer Board)	206	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead LFCSP	50.8		${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG1419

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

| SA | 1 |
| :---: | :---: | :---: |

Figure 3. 8-Lead LFCSP Pin Configuration

Figure 4. 8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
LFCSP	MSOP		
1	1	D	Drain Terminal. This pin can be an input or output.
2	2	SA	Source Terminal. This pin can be an input or output.
3	3	GND	Ground (0 V) Reference.
4	4	VDD	Most Positive Power Supply Potential.
5	Not applicable	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the IN logic input determines which switch is turned on.
Not applicable	5	NC	No Connect.
6	6	IN	Logic Control Input.
7	7	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential.
8	8	SB	Source Terminal. This pin can be an input or output.
0	Not applicable	EPAD	Exposed Pad. Exposed pad tied to substrate, $\mathrm{V}_{\text {ss }}$.

Table 8. 8-Lead LFCSP Truth Table

EN	IN	Switch A	Switch B
0	X	Off	Off
1	0	On	Off
1	1	Off	On

Table 9. 8-Lead MSOP Truth Table

IN	Switch A	Switch B
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, +12 V Single Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 11. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 12. Leakage Currents as a Function of Temperature, +12 V Single Supply

Figure 13. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

Figure 14. IDD vs. Logic Level

Figure 15. Charge Injection vs. Source Voltage

Figure 16. $t_{\text {Transition }}$ Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. THD + N vs. Frequency

Figure 21. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 22. On Resistance

Figure 24. On Leakage

Figure 23. Off Leakage

Figure 25. Switching Times, ton and toff

Figure 26. Break-Before-Make Time Delay

Figure 27. Enable Delay, toN (EN), toff (EN)

Figure 28. Charge Injection

TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.

V_{D} (V_{s})

The analog voltage on Terminal D and Terminal S.
Ron
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {flat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.

C_{D} (Off)

The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
The on switch capacitance, measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
The digital input capacitance.
ton (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 27.
$t_{\text {Off }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 27.

$\mathbf{t}_{\text {transition }}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$\mathrm{T}_{\text {ввм }}$

Off time measured between the 80% point of both switches when switching from one address state to another. See Figure 26.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 28.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 29.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 30.

Bandwidth

The frequency at which the output is attenuated by 3 dB . See Figure 31.
On Response
The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch. See Figure 31.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 32.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 21.

OUTLINE DIMENSIONS

Figure 33. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

Figure 34. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ Body, Very Very Thin, Dual Lead
(CP-8-4)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG1419BRMZ $_{\text {ADG1419BRMZ-REEL7 }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8
8-Lead Mini Small Outline Package [MSOP]	RM-8	S1L		
ADG1419BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	1C
$\mathrm{Z}=$ RoHS Compliant Part.				

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test

