# **Transmission Line Capacitor**



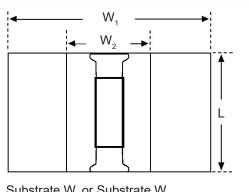


## **BENEFITS**

- · HFSS Design Unique for every device
- · Gold Wirebondable
- · Copper Conductor Design for improved Circuit Conductivity
- · Designs Optimized for RF/Performance
- ROHS Compliant

### **DESCRIPTION**

AVX Thin Film Technologies is pleased to introduce a novel MIM (Metal-Insulator-Metal) capacitor using a transmission line wire bond pad structure with backside ground.


The TL MIM can be supplied on quartz, alumina, glass and other substrates to minimize losses. Copper traces are used for optimal conductivity. Front and backside gold metalization make this device suitable for epoxy, gold wire bond/ribbon bond attachments

### **APPLICATIONS**

- · DC Blocking at UHF
- · High Frequency Link
- RF Microwave applications

# **SUBSTRATE MATERIALS**

| Silicon (with Si02)  |
|----------------------|
| Fused Silca (Quartz) |
| Alumina (Al203)      |
| Glass                |



#### Substrate W<sub>1</sub> or Substrate W<sub>2</sub> Length is determined by transmission line

### **MECHANICAL DIMENSIONS**

Based on Transmission Line Design Request

### CAPACITOR MATERIALS

| Rated Voltage | Specific Capacitance | Dissapation Factor | TCC (ppm/°C) |  |
|---------------|----------------------|--------------------|--------------|--|
| ≤100          | 50 - 100 * pf/mm²    | <0.1%              | ±60          |  |

<sup>\*</sup>Actual maximum capacitance values depend on transmission line dimensions



# Thin Film MIM Capacitor (Metal-Insulator-Metal)



## **TEST METHODS**

| SPECIFICATION      |               | LIMIT                             |
|--------------------|---------------|-----------------------------------|
| MIL-STD-883-2011.8 | BOND STRENGTH | > 3 gm min. w/0.001" Au Wire      |
| MIL-STD-883-2018   | SHEAR SRENGTH | Size Dependent See Procedure      |
| MIL-STD-202-108    | LIFE          | 1000 hrs @ 125°C 2x rated voltage |

### **GENERAL CHARACTERISTICS**

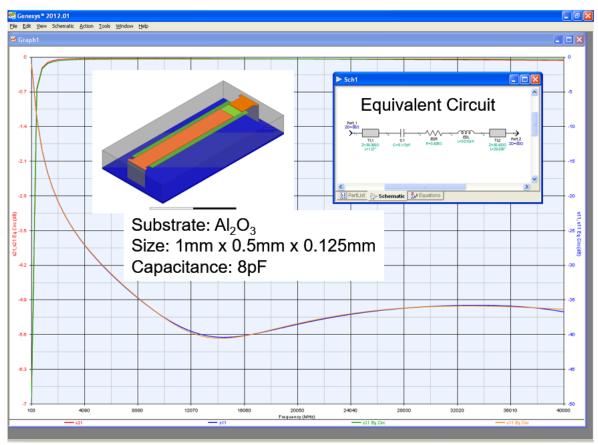
| Size (LxWxT)     | DESIGN DEPENDENT   |
|------------------|--------------------|
| Capacitor Range  | 0.3 - 50 pF        |
| Tolerance        | ± 20%              |
| Backing          | Gold Metallization |
| Termination Type | Gold Wire Bond     |

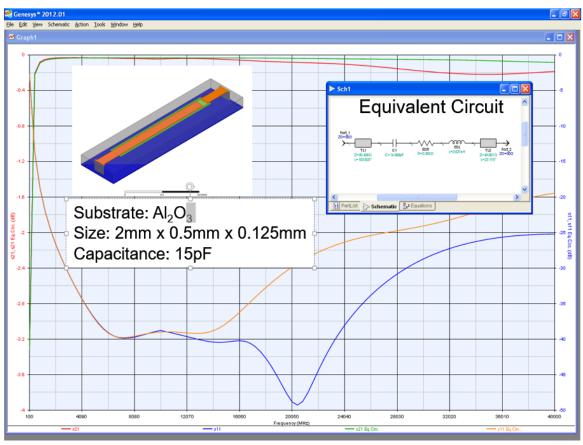
# **Available Part Numbers**

| Part Number    | Substrate | Length (mils) | Width (Mils) | Thickness (Mils) | Cap Value (pF) |
|----------------|-----------|---------------|--------------|------------------|----------------|
| MV0404C1R0MQAW | Quartz    | 40            | 40           | 5                | 1              |
| MV0404C5R0MQAW | Quartz    | 40            | 40           | 5                | 5              |
| MV0404C150MQAW | Quartz    | 40            | 40           | 5                | 15             |
| MV0204C1R0MQAW | Quartz    | 20            | 40           | 5                | 1              |
| MV0304C150MABW | Alumina   | 30            | 40           | 10               | 15             |
| MV0402C150MAAW | Alumina   | 40            | 20           | 5                | 15             |
| MV0802C150MAAW | Alumina   | 80            | 20           | 5                | 15             |
| MV0804C1R0MABW | Alumina   | 80            | 40           | 10               | 1              |
| MV0804C150MABW | Alumina   | 80            | 40           | 10               | 15             |
| MV3204C150MABW | Alumina   | 120           | 40           | 10               | 15             |
| MV0404C150MABW | Alumina   | 40            | 40           | 10               | 15             |

#### How to Order

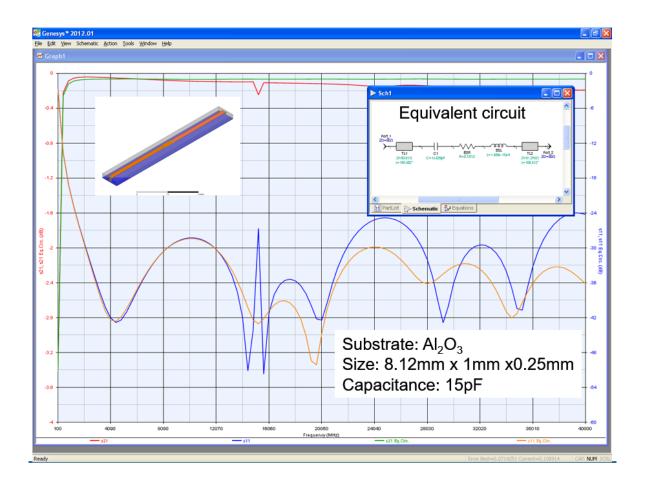
| MV          | <u>4</u>   | <u>02</u>  | <u>C</u>    | <u>A</u>           | <u>150</u>           | M              | Q           | <u>A</u>         | W              |
|-------------|------------|------------|-------------|--------------------|----------------------|----------------|-------------|------------------|----------------|
| Series Code | Substrate  | Substrate  | Working     | Standard Impedance | Capacitance          | Capacitance    | Substrate   | Substrate        | Packaging      |
|             | Length     | Width      | Voltage     |                    |                      | Tolerance      |             | Thickness (mils) |                |
| MV = TL MIM | in tens of | in tens of | C= 100 WVDC | $A = 50\Omega$     | Ccapacitance         | $M = \pm 20\%$ | A = Alumina | A=5 mils         | W = antistatic |
|             | mils       | mils       |             | X = Other          | code in pF           |                | Q = Quartz  | B= 10 mils       | waffle pack    |
|             |            |            |             | Contact Factory    | First two digits =   |                | G=Glass     | C= 15 mils       | T=Tested,      |
|             |            |            |             |                    | significant figures  |                | X = Other   | X=Contact        | undiced        |
|             |            |            |             |                    | or R for Decimal     |                |             | Factory          | D = Tested and |
|             |            |            |             |                    | place. Third digit = |                |             |                  | diced on tape  |
|             |            |            |             |                    | number of zeros      |                |             |                  |                |
|             |            |            |             |                    | or after "R"         |                |             |                  |                |


significant figures




# Thin Film MIM Capacitor (Metal-Insulator-Metal)










# Thin Film MIM Capacitor (Metal-Insulator-Metal)



