FEATURES

4.5Ω typical on resistance
1Ω on-resistance flatness
Up to 206 mA continuous current
$\pm 3.3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual-supply operation
3.3 V to 16 V single-supply operation

No VL supply required
3 V logic-compatible inputs
Rail-to-rail operation
ADG1633
16-lead TSSOP and 16 -lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP

ADG1634

20-lead TSSOP and 20-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Communication systems

Medical systems

Audio signal routing
Video signal routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Relay replacements

GENERAL DESCRIPTION

The ADG1633 and ADG1634 are monolithic industrial CMOS ($i \mathrm{CMOS}^{*}$) analog switches comprising three independently selectable single-pole, double-throw (SPDT) switches and four independently selectable SPDT switches, respectively.

All channels exhibit break-before-make switching action that prevents momentary shorting when switching channels. An $\overline{\text { EN input on the ADG1633 (LFCSP and TSSOP packages) and }}$ ADG1634 (LFCSP package only) is used to enable or disable the devices. When disabled, all channels are switched off.
The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

FUNCTIONAL BLOCK DIAGRAMS

IN1 IN2 IN3 EN
SWITCHES SHOWN FOR A 1 INPUT LOGIC.
Figure 1. ADG1633 TSSOP and LFCSP

SWITCHES SHOWN FOR A 1 INPUT LOGIC.

Figure 2. ADG1634 TSSOP

IN1 IN2 IN3 IN4 EN
SWITCHES SHOWN FOR A 1 INPUT LOGIC.

08319-003

Rev. B

ADG1633/ADG1634

TABLE OF CONTENTS

Features1
Applications. 1
General Description 1
Functional Block Diagrams 1
Revision History 2
Specifications 3
$\pm 5 \mathrm{~V}$ Dual Supply 3
12 V Single Supply 4
5 V Single Supply 5
3.3 V Single Supply 6

REVISION HISTORY

8/2016-Rev. A to Rev. B

Changed CP-20-4 to CP-20-10

\qquad
ThroughoutChanges to Figure 5 9
Changes to Figure 7 10
Updated Outline Dimensions 18
Changes to Ordering Guide 19
9/2014—Rev. 0 to Rev. A
Changes to Figure 26, Figure 27, Figure 28 14
Updated Outline Dimensions 17
Changes to Ordering Guide 19
Continuous Current per Channel, S or D7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics 11
Test Circuits 14
Terminology 16
Outline Dimensions 17
Ordering Guide 19

SPECIFICATIONS

± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{D D}$ to $V_{S S}$	V	
On Resistance (Ron)	4.5			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 26
	5	7	8	Ω max	$\mathrm{V}_{\mathrm{DD}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{S S}= \pm 4.5 \mathrm{~V}$
On-Resistance Match Between Channels (\triangle Ron)	0.12			$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	0.25	0.3	0.35	Ω max	
On-Resistance Flatness (Rflation)	1			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	1.3	1.7	2	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.01			$n A$ typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 27
	± 0.1	± 1.5	± 12	nA max	
Drain Off Leakage, I_{D} (Off)	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 27
	± 0.15	± 2	± 20	nA max	
Channel On Leakage, lo, Is (On)	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 28
	± 0.15	± 2	± 20	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, IINL or $\mathrm{linh}^{\text {L }}$	± 1			nA typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	8			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	161			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	200	236	264	ns max	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 29
ton ($\overline{\mathrm{EN}}$)	61			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
	79	88	98	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 31
toff ($\overline{\mathrm{EN}}$)	162			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	199	232	259	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 31
Break-Before-Make Time Delay, t_{D}	44			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			30	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=2.5 \mathrm{~V}$; see Figure 30
Charge Injection	-12.5			pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 33
Channel-to-Channel Crosstalk	-64			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 35 \end{aligned}$
Total Harmonic Distortion + Noise (THD + N)	0.3			\% typ	$\mathrm{RL}=110 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz ; see Figure 36
-3 dB Bandwidth	103			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 34
C_{5} (Off)	19			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {D }}$ (Off)	33			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{5}(\mathrm{On})$	57			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD	0.001				$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1.0	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 3.3 / \pm 8$	\checkmark min/max	

[^0]
ADG1633/ADG1634

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

[^2]
ADG1633/ADG1634

3.3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

${ }^{1}$ Guaranteed by design, but not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5. ADG1633

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$V_{\text {DD }}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	126	84	56	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	206	126	70	mA max
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	133	87	56	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	213	133	73	mA max
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	98	70	45	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	157	105	63	mA max
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	77	56	38	mA max
$\operatorname{LFCSP}\left(\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}\right)$	129	87	56	mA max

Table 6. ADG1634

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=95^{\circ} \mathrm{C} / \mathrm{W}$)	112	77	52	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	220	136	73	mA max
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=95^{\circ} \mathrm{C} / \mathrm{W}$)	119	80	52	mA max
LFCSP ($\mathrm{Jj}_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	234	140	73	mA max
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=95^{\circ} \mathrm{C} / \mathrm{W}$)	87	63	42	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	171	112	66	mA max
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=95^{\circ} \mathrm{C} / \mathrm{W}$)	70	52	35	mA max
LFCSP ($\theta_{\text {JA }}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	140	94	59	mA max

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	18 V
VDD to GND	-0.3 V to +18 V
Vss to GND	+0.3 V to -18 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	450 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, S or D ${ }^{2}$	Data + 15\%
Operating Temperature Range Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, θ_{JA} Thermal Impedance, 0 Airflow (4Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead TSSOP, θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	$95^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$), θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$), θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$

[^3]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 8. ADG1633 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	VDD	Most Positive Power Supply Potential.
2	16	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	S2B	Source Terminal 2B. Can be an input or an output.
6	4	D2	Drain Terminal 2. Can be an input or an output.
7	5	S2A	Source Terminal 2A. Can be an input or an output.
8	6	IN2	Logic Control Input 2.
9	7	IN3	Logic Control Input 3.
10	8	S3A	Source Terminal 3A. Can be an input or an output.
11	9	D3	Drain Terminal 3. Can be an input or an output.
12	10	S3B	Source Terminal 3B. Can be an input or an output.
13	11	$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
14	12	$\overline{\mathrm{EN}}$	Active Low Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, INx logic inputs determine the on switches.
15	13	IN1	Logic Control Input 1.
16	14	GND	Ground (0 V) Reference.
N/A	17	EP	Exposed Pad. The exposed pad is tied to the substrate, V_{ss}.

Table 9. ADG1633 Truth Table

$\mathbf{E N}$	$\mathbf{I N x}$	SxA	SxB
1	X^{1}	Off	Off
0	0	Off	On
0	1	On	Off

[^4]
ADG1633/ADG1634

Figure 6. ADG1634 TSSOP Pin Configuration

NOTES

1. EXPOSED PAD IS TIED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$. 鲟

Figure 7. ADG1634 LFCSP Pin Configuration

Table 10. ADG1634 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	19	IN1	Logic Control Input 1.
2	20	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	VSS	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
6	4	GND	Ground (0 V) Reference.
7	5	S2B	Source Terminal 2B. Can be an input or an output.
8	6	D2	Drain Terminal 2. Can be an input or an output.
9	7	S2A	Source Terminal 2A. Can be an input or an output.
10	8	IN2	Logic Control Input 2.
11	9	IN3	Logic Control Input 3.
12	10	S3A	Source Terminal 3A. Can be an input or an output.
13	11	D3	Drain Terminal 3. Can be an input or an output.
14	12	S3B	Source Terminal 3B. Can be an input or an output.
15	N/A	NC	No Connect.
16	13	VDD	Most Positive Power Supply Potential.
17	14	S4B	Source Terminal 4B. Can be an input or an output.
18	15	D4	Drain Terminal 4. Can be an input or an output.
19	16	S4A	Source Terminal 4A. Can be an input or an output.
20	17	IN4	Logic Control Input 4.
N/A	18	EN	Active Low Digital Input. When this pin is high, the device is disabled and all switches are off. When
N/A	21	EP	this pin is low, INx logic inputs determine the on switches.

Table 11. ADG1634 TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 12. ADG1634 LFCSP Truth Table

$\overline{\mathbf{E N}}$	INx	SxA	SxB
1	X^{1}	Off	Off
0	0	Off	On
0	1	On	Off

[^5]TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$, Dual Supply

Figure 9. On Resistance vs. VD (Vs), Single Supply

Figure 10. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures,
± 5 V Dual Supply

Figure 11. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, 12 V Single Supply

Figure 12. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, 5 V Single Supply

Figure 13. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures,
3.3 V Single Supply

Figure 14. ADG1633 Leakage Currents vs. Temperature,
± 5 V Dual Supply

Figure 15. ADG1633 Leakage Currents vs. Temperature, 12 V Single Supply

Figure 16. ADG1633 Leakage Currents vs. Temperature, 5 V Single Supply

Figure 17. ADG1633 Leakage Currents vs. Temperature, 3.3V Single Supply

Figure 18. IDD vs. Logic Level

Figure 19. Charge Injection vs. Source Voltage

Figure 20. Transition Time vs. Temperature

Figure 21. Off Isolation vs. Frequency

Figure 22. Crosstalk vs. Frequency

Figure 23. On Response vs. Frequency

Figure 24. $T H D+N$ vs. Frequency

Figure 25. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 26. On Resistance

Figure 27. Off Leakage

Figure 28. On Leakage

Figure 29. Switching Timing

Figure 30. Break-Before-Make Delay, to

Rev. B|Page 14 of 19

Figure 32. Charge Injection

Figure 33. Off Isolation

Figure 34. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

Figure 35. Channel-to-Channel Crosstalk

Figure 36. THD + Noise

ADG1633/ADG1634

TERMINOLOGY

Ron
Ohmic resistance between Terminal D and Terminal S.

Δ Ron

The difference between the Ron of any two channels.
$\mathbf{R}_{\text {FLAT(ON) }}$
The difference between the maximum and minimum value of on resistance measured.
I_{s} (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current when the switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminal D and Terminal S.
Cs (Off)
Channel input capacitance for off condition.
C_{D} (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton $(\overline{\mathrm{EN}})$
Delay time between the 50% and 90% points of the digital input and switch on condition.
toff ($\overline{\mathrm{EN}}$)
Delay time between the 50% and 90% points of the digital input and switch off condition.
$t_{\text {trans }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\text {вbм }}$

Off time measured between the 80% point of both switches when switching from one address state to another.
V_{IL}
Maximum input voltage for Logic 0 .
V_{IH}
Minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{IL}}\left(\mathrm{I}_{\mathrm{IH}}\right)$
Input current of the digital input.
IDD
Positive supply current.
Iss
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} \mathrm{p-p}$. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.
Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and 0.75 mm Package Height (CP-16-22)
Dimensions shown in millimeters

Figure 39. 20-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-20$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.
Figure 40. 20-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-20-10)
Dimensions shown in millimeters

ADG1633/ADG1634

ORDERING GUIDE

Model 1	Temperature Range	Description	$\overline{\text { EN }}$ Pin	Package Option	Branding
ADG1633BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG1633BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG1633BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-22	SD3
ADG1634BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG1634BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG1634BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	$\mathrm{CP}-20-10$	

[^6]
[^0]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^3]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
 ${ }^{2}$ See Table 5 and Table 6.

[^4]: ${ }^{1} \mathrm{X}=$ don't care.

[^5]: ${ }^{1} \mathrm{X}=$ don't care.

[^6]: ${ }^{1} Z=$ RoHS Compliant Part.

