FEATURES

1.8 V to 5.5 V single supply
4Ω (max) on resistance
0.75Ω (typ) on resistance flatness
$-\mathbf{3 d B}$ bandwidth > 200 MHz
Rail-to-rail operation
6-lead SOT-23 package
Fast switching times:
$t_{\text {on }}=12 \mathrm{~ns}$
toff $=6 \mathbf{n s}$
Typical power consumption: (<0.01 $\boldsymbol{\mu W}$)
TTL/CMOS compatible
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

APPLICATIONS

Battery-powered systems

Communication systems
Sample-and-hold systems
Audio signal routing
Video switching
Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG719-EP is a monolithic CMOS SPDT switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.
The ADG719-EP can operate from a single-supply range of 1.8 V to 5.5 V , making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices, Inc.

Each switch of the ADG719-EP conducts equally well in both directions when on. The ADG719-EP exhibits break-beforemake switching action.

Because of the advanced submicron process, -3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG719-EP is available in a 6-lead SOT-23 package.
Full details about this enhanced product are available in the ADG719 data sheet, which should be consulted in conjunction with this data sheet.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Supports defense and aerospace applications (AQEC standard).
2. Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. Controlled manufacturing baseline.
4. One assembly and test site.
5. One fabrication site.
6. Enhanced product change notification.
7. Qualification data available on request.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADG719-EP

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram .. 1
General Description ... 1
Product Highlights ... 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings 5
ESD Caution. 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Test Circuits 9
Outline Dimensions 11
Ordering Guide 11

REVISION HISTORY

4/10—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 2.5 \\ & 4 \\ & 0.1 \\ & \\ & 0.75 \end{aligned}$	0 V to V_{DD} 7 0.4 1.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \text { see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Is (Off) Source Off Leakage Channel On Leakage $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	1 5	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V} \mathrm{VD}_{\mathrm{D}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} ; \end{aligned}$ see Figure 14 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} \text {; }$ see Figure 15
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linL or $\mathrm{l}_{\mathrm{INH}}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	$V_{\text {min }}$ \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 7 \\ & 3 \\ & 8 \\ & -67 \\ & -87 \\ & \\ & -62 \\ & -82 \\ & 200 \\ & 7 \\ & 27 \end{aligned}$	12 6 1	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; see Figure 16 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; see Figure 16 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=3 \mathrm{~V}$; see Figure 17 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 18 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 19 $R_{L}=50 \Omega, C_{L}=5 p F$; see Figure 20
POWER REQUIREMENTS ldo	0.001	1.0	μA typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG719-EP

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on))	6 0.1	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & \\ & 0.4 \\ & 2.5 \end{aligned}$	Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ;$ see Figure 13 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Channel On Leakage I_{D}, $\mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	5	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \end{aligned}$ see Figure 14 $V_{S}=V_{D}=1 \mathrm{~V} \text { or } V_{S}=V_{D}=3 \mathrm{~V} \text {; }$ see Figure 15
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current linz or linh	0.005	$\begin{gathered} 2.0 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	\checkmark min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t_{D} Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{s} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}$ (On)	10 4 8 -67 -87 -62 -82 200 7 27	15 8	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}$; see Figure 16 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}$; see Figure 16 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=2 \mathrm{~V}$; see Figure 17 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 18 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=10 \mathrm{MHz}$ $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 19 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 20
POWER REQUIREMENTS IDD	$\begin{aligned} & 0.001 \\ & 1.0 \end{aligned}$		$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^1]
ADG719-EP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +7 V
Analog, Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$ or
	30 mA, whichever occurs
first	
Peak Current, S or D	100 mA
	(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty
cycle max)	
Continuous Current, S or D	30 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SOT-23 Package	
\quad ӨJA Thermal Impedance ${ }^{2}$	$186.45^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
\quad Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec
ESD	1 kV

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one maximum rating may be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG719-EP

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 Pin Configuration
Table 4. Pin description

Pin No.	Mnemonic	Description
1	IN	Digital Switch Control Pin.
2	VDD	Most Positive Power Supply Pin.
3	GND	Ground (0 V) Reference Pin.
4	S1	Source Terminal. Can be used as an input or output.
5	D	Drain Terminal. Can be used as an input or output.
6	S2	Source Terminal. Can be used as an input or output.

Table 5. Truth Table

ADG719-EP IN	Switch S1	Switch S2
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right)$, Single Supplies

Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=3 \mathrm{~V}$

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. Leakage Currents vs. Temperature

Figure 7. Leakage Currents vs. Temperature

Figure 8. Supply Current vs. Input Switching Frequency

Figure 9. Off Isolation vs. Frequency

Figure 10. Crosstalk vs. Frequency

Figure 11. On Response vs. Frequency

Figure 12. Charge Injection vs. Source Voltage

ADG719-EP

TEST CIRCUITS

Figure 13. On Resistance

Figure 14. Off Leakage

Figure 15. On Leakage

Figure 16. Switching Times

Figure 17. Break-Before-Make Time Delay, t_{D}

ADG719-EP

Figure 18. Off Isolation

Figure 19. Channel-to-Channel Crosstalk

Figure 20. Bandwidth

OUTLINE DIMENSIONS

Figure 21. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG719SRJZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 -Lead SOT-23	RJ-6	S3T

${ }^{1} Z=$ RoHS Compliant Part.

ADG719-EP

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D will be clamped by internal diodes. Current should
 be limited to the maximum ratings given
 ${ }^{2}$ Measured on a 4-layer board.

