ASSP
 Single Serial Input PLL Frequency Synthesizer
 On-Chip 2.5 GHz Prescaler
 MB15E07

DESCRIPTION

The Fujitsu MB15E07 is serial input Phase Locked Loop (PLL) frequency synthesizer with a 2.5 GHz prescaler. A $32 / 33$ or a $64 / 65$ can be selected for the prescaler that enables pulse swallow operation.
The latest BiCMOS process technology is used, resultantly a supply current is limited as low as 8 mA typ. This operates with a supply voltage of 3.0 V (typ.)
Furthermore, a super charger circuit is included to get a fast tuning as well as low noise performance. As a result of this, MB15E07 is ideally suitable for digital mobile communications, such as GSM (Global System for Mobile Communications).

■ FEATURES

- High frequency operation: $2.5 \mathrm{GHz} \max (@ \mathrm{P}=64 / 65)$

> 1.8 GHz max (@P = 32/33)

- Low power supply voltage: $\mathrm{Vcc}=2.7$ to 3.6 V
- Very Low power supply current : Icc $=8.0 \mathrm{~mA}$ typ. (Vcc $=3 \mathrm{~V}$)
- Power saving function : lps = $0.1 \mu \mathrm{~A}$ typ.
- Pulse swallow function: $32 / 33$ or 64/65
- Serial input 14-bit programmable reference divider: $R=5$ to 16,383
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 5 to 2,047
- Wide operating temperature: $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 16-pin SSOP package (FPT-16P-M05)

PACKAGE

(FPT-16P-M05)

PIN ASSIGNMENT

PIN DESCRIPTIONS

Pin no.	Pin name	I/O	Descriptions					
1	OSCIN	I	Programmable reference divider input. Oscillator input. Connection for an crystal or a TCXO. TCXO should be connected with a coupling capacitor.					
2	OSCout	O	Oscillator output. Connection for an external crystal.					
3	V_{P}	-	Power supply voltage input for the charge pump.	$	$	4	Vcc	-
:---:	:---:	:---						
Power supply voltage input.								

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remark
Power supply voltage	V_{cc}	-0.5 to +4.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V_{cc} to +6.0	V	
Input voltage	V_{l}	-0.5 to $\mathrm{Vcc}+0.5$	V	
Output voltage	V_{c}	-0.5 to $\mathrm{Vcc}+0.5$	V	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	2.7	3.0	3.6	V	
	$\mathrm{~V}_{\mathrm{P}}$	V cc	-	6.0	V	
Input voltage	V_{c}	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Handling Precautions

- This device should be transported and stores in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	$\left(\mathrm{Vcc}=2.7\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$				
		Value		Unit				
		Min.			Typ.	Max.		
Power supply current*1			Icc	$\begin{aligned} & \text { fin }=1800 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz}, \mathrm{P}=32 / 33 \end{aligned}$	-	8.0	-	mA
Power saving current			Ips	ZC = "H" or open	-	0.1	10	$\mu \mathrm{A}$
Operating frequency		fin	$\mathrm{P}=32 / 33$	100	-	1800	MHz	
		$\mathrm{P}=64 / 65$	100	-	2500	MHz		
Crystal oscillator operating frequency			fosc	min. $500 \mathrm{mVp}-\mathrm{p}$	3	-	40	MHz
Input sensitivity	fin	Vfin	50Ω system (Refer to the test circuit.)	-10	-	+2	dBm	
	OSCin	Vosc		500	-	Vcc	mVp-p	
Input voltage	Data, Clock, LE, PS, ZC	$\mathrm{V}_{\text {H }}$		$\begin{gathered} \operatorname{Vcc} \times \\ 0.7 \end{gathered}$	-	-	V	
		VIL		-	-	$\begin{gathered} \operatorname{Vcc} \times \\ 0.3 \end{gathered}$		
Input current	Data, Clock, LE, PS	І ${ }_{\text {H }}$		-1.0	-	+1.0	$\mu \mathrm{A}$	
		ILL		-1.0	-	+1.0		
	ZC	Ін		-1.0	-	+1.0	$\mu \mathrm{A}$	
		ILL	Pull up input	-100	-	0		
	OSCin	$\mathrm{IH}^{\text {H}}$		0	-	+100	$\mu \mathrm{A}$	
		ILL		-100	-	0		
Output voltage	фP	VoL	Open drain output	-	-	0.4	V	
	фR, LD/fout	Vон		$\begin{gathered} \text { Vcc- } \\ 0.4 \end{gathered}$	-	-	V	
		VoL		-	-	0.4		
	Do	Vooh		$\begin{gathered} \text { Vp- } \\ 0.4 \end{gathered}$	-	-	V	
		Vool		-	-	0.4		
High impedance cutoff current	Do	loff		-	-	1.1	$\mu \mathrm{A}$	
Output current	$\phi \mathrm{P}$	lo	Open drain output	-	-	1.0	mA	
	ϕ R, LD/fout	Іон		-	-	-1.0	mA	
		loL		1.0	-	-		
	Do	Ioon	$\begin{aligned} & \mathrm{Vcc}=3.0 \mathrm{~V}, \\ & \mathrm{Vp}=5 \mathrm{~V}, \\ & \mathrm{VooH}=4.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	-10.0	-	mA	
		Iool	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{Vp}=5 \mathrm{~V}, \\ & \mathrm{~V} \text { DoL }=1.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	10.0	-		

*1: Conditions; $\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in locking state.

FUNCTION DESCRIPTIONS

Pulse Swallow Function

The divide ratio can be calculated using the following equation:

```
fvco = [(P x N) + A] x fosc % R (A<N)
    fvco : Output frequency of external voltage controlled oscillator (VCO)
    N : Preset divide ratio of binary 11-bit programmable counter (5 to 2,047)
    A : Preset divide ratio of binary 7-bit swallow counter ( 0 < A < 127)
    fosc : Output frequency of the reference frequency oscillator
    R : Preset divide ratio of binary 14-bit programmable reference counter (5 to 16,383)
    P : Preset divide ratio of modules prescaler (32 or 64)
```


Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.
Binary serial data is entered through the Data pin.
One bit of data is shifted into the shift register on the rising edge of the clock. When the load enable pin is high, stored data is latched according to the control bit data as follows:

Table. 1 Control Bit

Control bit (CNT)	Destination of serial data
H	17 bit latch (for the programmable reference divider)
L	18 bit latch (for the programmable divider)

Shift Register Configuration

Programmable Reference Counter

CNT
: Control bit
R1 to R14 : Divide ratio setting bit for the programmable reference counter (5 to 16,383)
SW : Divide ratio setting bit for the prescaler (32/33 or 64/65)
FC : Phase control bit for the phase comparator
LDS : LD/fout signal select bit
[Table. 1]
[Table. 2]
[Table. 5]
[Table. 7]
[Table. 6]

Note : Start data input with MSB first

Programmable Reference Counter

Note : Start data input with MSB first

Table2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio $\mathbf{(R)}$	\mathbf{R} $\mathbf{1 4}$	\mathbf{R} $\mathbf{1 3}$	\mathbf{R} $\mathbf{1 2}$	\mathbf{R} $\mathbf{1 1}$	\mathbf{R} $\mathbf{1 0}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{1}$
5	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
\cdot														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 5 is prohibited.
Table. 3 Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	\mathbf{N} $\mathbf{1 1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
\cdot											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 5 is prohibited.

- Divide ratio (N) range $=5$ to 2,047

Table. 4 Binary 7-bit Swallow Counter Data Setting

Divide ratio (A)	\mathbf{A} $\mathbf{7}$	\mathbf{A} $\mathbf{6}$	\mathbf{A} $\mathbf{5}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{1}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
•	\cdot						
127	1	1	1	1	1	1	1

Note: • Divide ratio (A) range $=0$ to 127
Table. 5 Prescaler Data Setting

SW	Prescaler Divide ratio
H	$32 / 33$
L	$64 / 65$

Table. 6 LD/fout Output Select Data Setting

LDS	LD/fout output signal
H	fout signal
L	LD signal

Relation between the FC input and phase characteristics

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level ($\mathrm{D} \circ$) and the phase comparator output ($\phi \mathrm{R}, \phi \mathrm{P}$) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of $D o, \phi R$, and ϕP is shown below.

Table. 7 FC Bit Data Setting (LDS = "H")

	FC = High				FC = Low			
	Do	ϕR	ϕP	LD/fout	Do	ϕR	ϕP	LD/fout
$\mathrm{f}_{\mathrm{r}}>\mathrm{f}_{\mathrm{p}}$	H	L	L	(fr)	L	H	Z^{*}	(fp)
$\mathrm{fr}_{\mathrm{r}}<\mathrm{f}_{\mathrm{p}}$	L	H	Z^{*}	(fr)	H	L	L	(fp)
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	Z^{*}	L	Z^{*}	(fr)	Z^{*}	L	Z^{*}	(fp)

[^0]When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.
*: When the LPF and VCO characteristics are similar to ${ }^{(1)}$, set FC bit high.
*: When the VCO characteristics are similar to (2), set FC bit low.

Power Saving Mode (Intermittent Mode Control Circuit)

Setting a PS pin to Low, the IC enters into power saving mode resultatly current sonsumption can be limited to $10 \mu \mathrm{~A}$ (max.). Setting PS pin to High, power saving mode is released so that the IC works normally.
In addition, the intermittent operation control circuit is included which helps smooth start up from the power saving mode. In general, the power consumption can be saved by the intermittent operation that powering down or waking up the synthesizer. Such case, if the PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (f_{r}) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop.
To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.
During the power saving mode, the corresponding section except for indispensable circuit for the power saving function stops working, then current consumption is reduced to $10 \mu \mathrm{~A}$ (max.).
At that time, the Do and LD become the same state as when a loop is locking. That is, the Do becomes high impedance.
A VCO control voltage is naturally kept at the locking voltage which defined by a LPF"s time constant. As a result of this, VCO's frequency is kept at the locking frequency.

Note: • While the power saving mode is executed, ZC pin should be set at " H " or open. If ZC is set at " L " during power saving mode, approximately $10 \mu \mathrm{~A}$ current flows.

- PS pin must be set "L" at Power-ON.
- The power saving mode can be released (PS : $L \rightarrow H$) 1 us later after power supply remains stable.
- During the power saving mode, it is possible to input the serial data.

Table. 8 PS Pin Setting

PS pin	Status
H	Normal mode
L	Power saving mode

Table. 9 ZC Pin Setting

ZC pin	Do output
H	Normal output
L	High impedance

SERIAL DATA INPUT TIMING

On rising edge of the clock, one bit of the data is transferred into the shift register.

Parameter	Min.	Typ.	Max.	Unit
t1	20	-	-	ns
t2	20	-	-	ns
t3	30	-	-	ns
t4	30	-	-	ns

Parameter	Min.	Typ.	Max.	Unit
t5	100	-	-	ns
t6	20	-	-	ns
t 7	100	-	-	ns

PHASE COMPARATOR OUTPUT WAVEFORM

[FC = "H"]

[FC = "L"]

Notes: 1. Phase error detection range: $-2 \pi t \mathrm{to}+2 \pi$
2. Pulses on Do output signal during locked state are output to prevent dead zone.
3. LD output becomes low when phase is twu or more. L.D output becomes high when phase error is twL or less and continues to be so for three cysles or more.
4. twu and twL depend on OSCin input frequency.
twu $\geq 8 /$ fosc (e g.twu $\geq 625 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)
$\mathrm{twL} \leq 16 / \mathrm{fosc}$ (e g.twl $\leq 1250 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)
5. LD becomes high during the power saving mode ($\mathrm{PS}=\mathrm{L} \mathrm{L} "$.)

MB15E07

TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCin)

APPLICATION EXAMPLE

(Continued)

TYPICAL CHARACTERISTICS

Do Output Current

fin Input Sensitivity

(Continued)

MB15E07

(Continued)
fin Input Snsitivity

OSCin Input Characteristics

(Continued)
(Continued)

fin Input Impedance

OSCin Input Impedance

MB15E07

REFERENCE INFORMATION

(Continued)

MB15E07

■ ORDERING INFORMATION

Part number	Package	Remarks
MB15E07PFV1	16-pin Plastic SSOP (FPT-16P-M05)	

MB15E07

PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan

[^0]: *:High impedance

