AD9048

FEATURES
35 MSPS Encode Rate
16 pF Input Capacitance
550 mW Power Dissipation
Industry-Standard Pinouts
MIL-STD-883 Compliant Versions Available
APPLICATIONS
Professional Video Systems
Special Effects Generators
Electro-Optics
Digital Radio
Electronic Warfare (ECM, ECCM, ESM)

## GENERAL DESCRIPTION

The AD9048 is an 8-bit, 35 MSPS flash converter, made on a high speed bipolar process, which is an alternate source for the TDC1048 unit, and offers enhancements over its predecessor. Lower power dissipation makes the AD9048 attractive for a variety of system designs.
Because of its wide bandwidth, it is an ideal choice for real-time conversion of video signals. Input bandwidth is flat with no missing codes.
Clocked latching comparators, encoding logic, and output buffer registers operating at minimum rates of 35 MSPS preclude a need for a sample-and-hold (S/H) or track-and-hold (T/H) in most system designs using the AD9048. All digital control inputs and outputs are TTL compatible.
Devices operating over two ambient temperature ranges and with two grades of linearity are available. Linearities of either 0.5 LSB or 0.75 LSB can be ordered for a commercial range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ or extended case temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

REV. F

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

## FUNCTIONAL BLOCK DIAGRAM



Commercial versions are packaged in 28-lead DIPs; extended temperature versions are available in ceramic DIP and ceramic LCC packages. Both commercial units and MIL-STD-883 units are standard products.
The AD9048 A/D converter is available in versions compliant with MIL-STD-883. Refer to the Analog Devices Military Products Databook or current AD9048/883B data sheet for detailed specifications.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

VCC to DGND . . . . . . . . . . . . . . . . -0.5 V DC to +7.0 V DC
AGND to DGND $\qquad$ -0.5 V DC to +0.5 V DC $\mathrm{V}_{\mathrm{EE}}$ to AGND . . . . . . . . . . . . . . . . . +0.5 V DC to -7.0 V DC
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{RT}}$, or $\mathrm{V}_{\mathrm{RB}}$ to $A G N D$ $\qquad$
$\qquad$ 0.5 V to $\mathrm{V}_{\mathrm{EE}}$ $\mathrm{V}_{\mathrm{RT}}$ to $\mathrm{V}_{\mathrm{RB}} \ldots \ldots . .$. CONV, NMINV or NLINV to DGND-0.5 V DC to +5.5 V DC Applied Output Voltage to DGND -0.5 V DC to $+5.5 \mathrm{~V} \mathrm{DC}^{2}$ Applied Output Current, Externally Forced

Output Short-Circuit Duration . . . . . . . . . . . . . . . . . 1.0 sec $^{5}$
Operating Temperature Range (Ambient)
AD9048JJ/KJ/JQ/KQ
. $\qquad$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AD9048SE/SQ/TE/TQ $\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic) $150^{\circ} \mathrm{C}^{6}$
Maximum Junction Temperature (Hermetic) . . . . . . . $150^{\circ} \mathrm{C}^{6}$
Lead Temperature (Soldering, 10 sec ) .............. $300^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(v_{C C}=+5.0 \mathrm{v} ; \mathrm{v}_{\mathrm{EE}}=-5.2 \mathrm{v}\right.$; Differential Reference Voltage $=2.0 \mathrm{v}$, unless otherwise noted. $)$


| Parameter (Conditions) | Temp | Test <br> Level | AD9048JJ/JQ |  |  | AD9048KJ/KQ |  |  | AD9048SE/SQ |  |  | AD9048TE/TQ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| AC LINEARITY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| In-Band Harmonics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DC to $2.438 \mathrm{MHz}^{15}$ | $25^{\circ} \mathrm{C}$ | I | 47 | 50 |  | 49 | 55 |  | 47 | 50 |  | 49 | 55 |  | dBc |
| DC to $9.35 \mathrm{MHz}^{16}$ | $25^{\circ} \mathrm{C}$ | V |  | 48 |  |  | 48 |  |  | 48 |  |  | 48 |  | dBc |
| Signal-to-Noise Ratio (SNR) ${ }^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.248 MHz Input Frequency ${ }^{17}$ | $25^{\circ} \mathrm{C}$ | I | 43.5 | 44 |  | 45 | 46 |  | 43.5 | 44 |  | 45 | 46 |  | dB |
| 2.438 MHz Input Frequency ${ }^{17}$ | $25^{\circ} \mathrm{C}$ | I | 43 | 44 |  | 44 | 46 |  | 43 | 44 |  | 44 | 46 |  | dB |
| 1.248 MHz Input Frequency ${ }^{18}$ | $25^{\circ} \mathrm{C}$ | I | 52.5 | 53 |  | 54 | 55 |  | 52.5 | 53 |  | 54 | 55 |  | dB |
| 2.438 MHz Input Frequency ${ }^{18}$ | $25^{\circ} \mathrm{C}$ | I | 52 | 53 |  | 53 | 55 |  | 52 | 53 |  | 53 | 55 |  | dB |
| Signal-to-Noise Ratio (SNR) ${ }^{16}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.248 MHz Input Frequency ${ }^{17}$ | $25^{\circ} \mathrm{C}$ | I | 43.5 | 44 |  | 45 | 46 |  | 43.5 | 44 |  | 45 | 46 |  | dB |
| 9.35 MHz Input Frequency ${ }^{17}$ | $25^{\circ} \mathrm{C}$ | V |  | 40.5 |  |  | 40.5 |  |  | 40.5 |  |  | 40.5 |  | dB |
| Noise Power Ratio (NPR) ${ }^{19}$ | $25^{\circ} \mathrm{C}$ | IV | 36.5 | 39 |  | 36.5 | 39 |  | 36.5 | 39 |  | 36.5 | 39 |  |  |
| Differential Phase ${ }^{20}$ | $25^{\circ} \mathrm{C}$ | IV |  |  | 1 |  |  | 1 |  |  | 1 |  |  | 1 | Degree |
| Differential Gain ${ }^{20}$ | $25^{\circ} \mathrm{C}$ | IV |  |  | 2 |  |  | 2 |  |  | 2 |  |  | 2 | \% |
| DIGITAL OUTPUTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Logic " 1 " Voltage | Full | VI | 2.4 |  |  | 2.4 |  |  | 2.4 |  |  | 2.4 |  |  | V |
| Logic "0" Voltage | Full | VI |  |  | 0.5 |  |  | 0.5 |  |  | 0.5 |  |  | 0.5 | V |
| Short Circuit Current ${ }^{5}$ | Full | VI |  |  | 30 |  |  | 30 |  |  | 30 |  |  | 30 | mA |
| POWER SUPPLY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Positive Supply Current | $25^{\circ} \mathrm{C}$ | I |  | 34 | 56 |  | 34 | 56 |  | 34 | 56 |  | 34 | 56 | mA |
|  | Full | VI |  |  | 58 |  |  | 58 |  |  | 58 |  |  | 58 | mA |
| Negative Supply Current | $25^{\circ} \mathrm{C}$ | I |  | 90 | 110 |  | 90 | 110 |  | 90 | 110 |  | 90 | 110 | mA |
|  | Full | VI |  |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 | mA |
| Nominal Power Dissipation | $25^{\circ} \mathrm{C}$ | V |  | 550 |  |  | 550 |  |  | 550 |  |  | 550 |  | mW |
| Reference Ladder Dissipation | $25^{\circ} \mathrm{C}$ | V |  | 45 |  |  | 45 |  |  | 45 |  |  | 45 |  | mW |

## NOTES

${ }^{1}$ Maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the device may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
${ }^{2}$ Applied voltage must be current-limited to specified range.
${ }^{3}$ Forcing voltage must be limited to specified range.
${ }^{4}$ Current is specified as negative when flowing into the device.
${ }^{5}$ Output High; one pin to ground; 1s duration.
${ }^{6}$ Typical thermal impedances (no air flow) are as follows:
Ceramic DIP: $\theta_{\mathrm{JA}}=49^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W} ; \mathrm{LCC}: \theta_{\mathrm{JA}}=69^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=21^{\circ} \mathrm{C} / \mathrm{W}$; JLCC: $\theta_{\mathrm{JA}}=59^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=19^{\circ} \mathrm{C} / \mathrm{W}$.
To calculate junction temperature $\left(\mathrm{T}_{\mathrm{T}}\right)$, use power dissipation (PD) and thermal impedance: $\mathrm{T}_{\mathrm{J}}=\mathrm{PD}\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\mathrm{AMBIENT}}=\mathrm{PD}\left(\theta_{\mathrm{JC}}\right)=+\mathrm{T}_{\mathrm{CASE}}$.
${ }^{7}$ Measured with $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ and CONVERT low (sampling mode).
${ }^{8}$ Determined by beat frequency testing for no missing codes.
${ }^{9} \mathrm{~V}_{\mathrm{RT}} \geq \mathrm{V}_{\mathrm{RB}}$ under all circumstances.
${ }^{10}$ Outputs terminated with 40 pF and eight $10 \Omega$ pull-up resistors.
${ }^{11}$ Interval from $50 \%$ point of leading edge CONVERT pulse to change in output data.
${ }^{12}$ For full-scale step input, 8-bit accuracy attained in specified time.
${ }^{13}$ Recovers to 8 -bit accuracy in specified time after -3 V input overvoltage.
${ }^{14}$ Output time skew includes high-to-low and low-to-high transitions as well as bit-to-bit time skew differences.
${ }^{15}$ Measured at 20 MHz encode rate with analog input 1 dB below full scale.
${ }^{16}$ Measured at 35 MHz encode rate with analog input 1 dB below full scale.
${ }^{17}$ RMS signal to rms noise.
${ }^{18}$ Peak signal to rms noise.
${ }^{19} \mathrm{DC}$ to 8 MHz noise bandwidth with 1.248 MHz slot; four sigma loading; 20 MHz encode.
${ }^{20}$ Clock frequency $=4 \times$ NTSC $=14.32 \mathrm{MHz}$. Measured with $40-$ IRE modulated ramp.
Specifications subject to change without notice.

## EXPLANATION OF TEST LEVELS

Test Level I - $100 \%$ production tested.
Test Level II - $100 \%$ production tested at $25^{\circ} \mathrm{C}$ and sample tested at specific temperatures.
Test Level III - Sample tested only.
Test Level IV - Parameter is guaranteed by design and characterization testing.
Test Level V - Parameter is a typical value only.
Test Level VI - All devices are 100\% production tested at $25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for military temperature devices; sample tested at temperature extremes for commercial/industrial devices.

## ORDERING GUIDE

| Model | Linearity | Temperature | Package <br> Option |
| :--- | :--- | :--- | :--- |
| AD9048JJ | 0.75 LSB | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $\mathrm{J}-28 \mathrm{~A}$ |
| AD9048KJ | 0.5 LSB | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $\mathrm{J}-28 \mathrm{~A}$ |
| AD9048JQ | 0.75 LSB | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $\mathrm{D}-28$ |
| AD9048KQ | 0.5 LSB | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $\mathrm{D}-28$ |
| AD9048SE/833B | 0.75 LSB | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{E}-28 \mathrm{~A}$ |
| AD9048TE/833B | 0.5 LSB | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{E}-28 \mathrm{~A}$ |
| AD9048SQ $/ 833 \mathrm{~B}^{2}$ | 0.75 LSB | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{D}-28$ |
| AD9048TQ $/ 833 \mathrm{~B}^{2}$ | 0.5 LSB | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{D}-28$ |

## NOTES

${ }^{1} \mathrm{E}=$ Leadless Ceramic Chip Carrier; J = J-Leaded Ceramic; $\mathrm{D}=$ Cerdip. ${ }^{2}$ MIL-STD-883 and Standard Military Drawing available.

## MECHANICAL INFORMATION

Die Dimensions . . . . 140 mils $\times 137$ mils $\times 21$ mils ( $\pm 2$ ) mils Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 4 mils $\times 4$ mils Metallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V $_{\text {EE }}$ Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride Die Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold Eutectic Bond Wire . . . . . . . . . . . . . . 1 mils Gold; Gold Ball Bonding


Figure 1. Bonding Diagram




## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9048 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN FUNCTION DESCRIPTIONS

\begin{tabular}{|c|c|c|c|}
\hline Mnemonic \& Description \& Mnemonic \& Description \\
\hline D1-D8 \& Eight Digital Outputs. D1 (MSB) is the most significant bit of the digital output word; D8 (LSB) is the least significant bit. \& \(R_{B}\)
\(R_{M}\) \& \begin{tabular}{l}
Most Negative Reference Voltage for Internal Reference Ladder \\
Midpoint Tap on Internal Reference Ladder
\end{tabular} \\
\hline AGND \& One of Two Analog Ground Returns. Both grounds should be connected together and to low impedance ground plane near the AD9048. \& \(\mathrm{R}_{\mathrm{T}}\) \& Most Positive Reference Voltage for Internal Reference Ladder \\
\hline DGND

$\mathrm{V}_{\text {CC }}$ \& One of Two Digital Ground Returns. Both grounds should be connected together and to low impedance ground plane near the AD9048. Positive Supply Terminals; Nominally 5.0 V \& | $V_{\text {IN }}$ |
| :--- |
| NMINV | \& | Analog Input Signal Pin |
| :--- |
| "Not Most Significant Bit Invert." In normal operation, this pin floats high; logic LOW at NMINV inverts most significant bit of digital output word [D1 (MSB)]. | <br>


\hline | $\mathrm{V}_{\mathrm{EE}}$ |
| :--- |
| CONVERT | \& | Negative Supply Terminals; Nominally -5.2 V |
| :--- |
| Input for Conversion Signal. Sample of analog input signal taken on rising edge of this pulse. | \& NLINV \& "Not Least Significant Bit Invert." In normal operation, this pin floats high; logic LOW at NLINV inverts the seven least significant bits of the digital output word. <br>

\hline
\end{tabular}



Figure 2. Burn-In Diagram

## THEORY OF OPERATION

Refer to the Functional Block Diagram of the AD9048. The AD9048 comprises three functional sections: a comparator array, encoding logic, and output latches.
Within the array, the analog input signal to be digitized is compared with 255 reference voltages. The outputs of all comparators whose references are below the input signal level will be high; outputs whose references are above that level will be low.
The n-of- 255 code that results from this comparison is applied to the encoding logic where it is converted into binary coding. When it is inverted with dc signals applied to the NLINV and/or NMINV pins, it becomes twos complement.
After encoding, the signal is applied to the output latch circuits where it is held constant between updates controlled by the application of CONVERT pulses.
The AD9048 uses strobed latching comparators in which comparator outputs are either high or low, as dictated by the analog input level. Data appearing at the output pins have a pipeline delay of one encode cycle.
Input signal levels between the references applied to $R_{T}(\operatorname{Pin} 18)$ and $R_{B}$ (Pin 26) will appear at the output as binary numbers between 0 and 255, inclusive. Signals outside that range will show up as either full-scale positive or full-scale negative outputs. No damage will occur to the AD9048 as long as the input is within the voltage range of $\mathrm{V}_{\mathrm{EE}}$ to 0.5 V .
The significantly reduced input capacitance of the AD9048 lowers the drive requirements of the input buffer/amplifier and also induces much smaller phase shift in the analog input signal.
Applications that depend on controlled phase shift at the converter input can benefit from using the AD9048 because of its inherently lower phase shift.
The CONVERT, analog input, and digital output circuits are shown in Figure 3.


Figure 3. Input/Output Circuits

System timing, which provides details on delays through the AD9048 as well as the relationships of various timing events, is shown in Figure 4.


Figure 4. Timing Diagram
Dynamic performance of the AD9048, i.e., typical signal-tonoise ratio, is illustrated in Figures 5 and 6.


Figure 5. Dynamic Performance ( 20 MHz Encode Rate)


Figure 6. Dynamic Performance ( 35 MHz Encode Rate)

## LAYOUT SUGGESTIONS

Designs that use the AD9048 or any other high speed device must follow some basic layout rules to ensure optimum performance.
The first requirement is to have a large, low impedance ground plane under and around the converter. If the system uses separate analog and digital grounds, both should be solidly connected together, and to the ground plane, as closely to the AD9048 as practical to avoid ground loop currents.
Ceramic $0.1 \mu \mathrm{~F}$ decoupling capacitors should be placed as closely as possible to the supply pins of the AD9048. For decoupling low frequency signals, use $10 \mu \mathrm{~F}$ tantalum capacitors also connected as closely as practical to voltage supply pins.
Within the AD9048, reference currents may vary because of coupling between the clock and input signals. As a result, it is important that the ends of the reference ladder, $\mathrm{R}_{\mathrm{T}}$ (Pin 18) and $\mathrm{R}_{\mathrm{B}}$ (Pin 26), be connected to low impedances (as measured from ground).
If the AD9048 is being used in a circuit in which the reference is not varied, a bypass capacitor to ground is strongly recommended. In applications that use varying references, they must be driven from a low impedance source.


Figure 7. Typical Connections

Table I. Truth Table

| Step | Range |  | Binary |  | Offset Twos Complement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | True | Inverted | True | Inverted |
|  | -2.000 V FS | -2.0480 V FS | NMINV = 1 | 0 | 0 | 1 |
|  | 7.8431 mV Step | 8.000 mV Step | NLINV = 1 | 0 | 1 | 0 |
| 000 | 0.0000 V | 0.0000 V | 00000000 | 11111111 | 10000000 | 01111111 |
| 001 | -0.0078 V | -0.0080 V | 00000001 | 11111110 | 10000001 | 01111110 |
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| 127 | -0.9961 V | $-1.0160 \mathrm{~V}$ | 01111111 | 10000000 | 11111111 | 00000000 |
| 128 | $-1.0039 \mathrm{~V}$ | $-1.0240 \mathrm{~V}$ | 10000000 | 01111111 | 00000000 | 11111111 |
| 129 | $-1.0118 \mathrm{~V}$ | $-1.0320 \mathrm{~V}$ | 10000001 | 01111110 | 00000001 | 11111110 |
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| 254 | -1.9921 V | -2.0320 V | 11111110 | 00000001 | 01111110 | 10000001 |
| 255 | -2.0000 V | $-2.0400 \mathrm{~V}$ | 11111111 | 00000000 | 01111111 | 10000000 |

## OUTLINE DIMENSIONS

## 28-Terminal Ceramic Leadless Chip Carrier [LCC] <br> (E-28A)

Dimensions shown in inches and (millimeters)


CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCHIEQUIVALENTS FOR

28-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
(D-28)
Dimensions shown in inches and (millimeters)


CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

## Revision History

Location Page
5/03-Data Sheet changed from REV. E to REV. F.
Changes to ORDERING GUIDE4
Changes to OUTLINE DIMENSIONS ..... 8
09/01—Data Sheet changed from REV. D to REV. E.
Change in ABSOLUTE MAXIMUM RATINGS ..... 2
05/01-Data Sheet changed from REV. C to REV. D.
Change in ORDERING GUIDE and PIN DESIGNATIONS ..... 4
Edits to 28-Lead Ceramic Side-Brazed DIP Package .....  8

