FEATURES

Driver, comparator, and active load
500 MHz toggle rate
Inhibit mode function
Dynamic clamps
Operating voltage range: $\mathbf{- 1 . 5} \mathrm{V}$ to 6.5 V
Output voltage swing: $\mathbf{2 0 0} \mathbf{~ m V}$ to $\mathbf{8 V}$
Four range adjustable slew rate
True/complement data mode bit
100-lead TQFP package, exposed pad
Low per channel power
1.4 W with load off
1.75 W with load programmed at 20 mA nominal

Low leakage (<10 nA) in High-Z mode
Driver
50Ω output resistance
1 ns minimum pulse width for a 3 V step
Load: -35 mA to +35 mA maximum current range

APPLICATIONS

Automatic test equipment

Semiconductor test systems

Board test systems

Instrumentation and characterization equipment

GENERAL DESCRIPTION

The ADATE206 is a complete, single-chip solution that performs the pin electronics functions of driver, comparator, and active load (DCL) for ATE applications. The active load can be powered down if not used.

The driver is a proprietary design that features three active modes: data high mode, data low mode, and term mode, as well as an inhibit state. The driver has low leakage ($<10 \mathrm{nA}$) in High-Z mode. The output voltage range is -1.5 V to +6.5 V to accommodate a wide variety of test devices.

The ADATE206 supports four programmable Tr/Tf times for applications where slower edge rates are required. The edge rate selection is done via two static digital CMOS select bits. The input data to the driver can be inverted using a single CMOS logic bit. This feature can be used for system calibration or applications where complement input data is needed.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADATE206

TABLE OF CONTENTS

\qquad
Applications.

\qquad 1
General Description 1
Functional Block Diagram 1
Table of Contents 2
Revision History 2
Specifications 3
Electrical Characteristics. 3

REVISION HISTORY

10/08- Rev. 0 to Rev. A
Changes to the VCOM Buffer Offset Parameter, Table 1. \qquad
1/06-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DRIVER					
Single-Ended Logic Input Characteristics (VTEN, DRV_INV)					
Threshold Voltage		CMOS		V	
Voltage Range	0		5.5	V	
Bias Current	-10		+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 3.3 \mathrm{~V}$
Single-Ended Logic Input Characteristics (SLEW0, SLEW1)					
Threshold Voltage		CMOS		V	
Voltage Range	0		5.5	V	
Bias Current	-10	+600	+800	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 3.3 \mathrm{~V}$
Bias Current		1		mA	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
Differential Logic Input Characteristics (DR_DATA_N, DR_DATA_P, DR_EN_N, DR_EN_P)					
Voltage Range	-2.0		3.5	V	
Differential Voltage with LVPECL Levels	± 250	± 300		mV	
Bias Current	-10	+2	+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.24 \mathrm{~V}, 3.495 \mathrm{~V}$
VIH, VIL Reference Inputs					
Input Bias Current	-10	-2	+10	$\mu \mathrm{A}$	Maximum value bias of reference sweep
VIT Reference Inputs					
Input Bias Current	-25	+12	+25	$\mu \mathrm{A}$	Maximum value bias of reference sweep
DC Output Characteristics					
Logic Range, VIL, VIH, VIT	-1.5		+6.5	V	
Amplitude [VH to VL]			8	V	
Output Resistance	47.5		52.5	Ω	
PSRR, Drive or Term Mode		10		mV / V	$\mathrm{V}_{\text {cl, }} \mathrm{V}_{\text {ex }} \pm 1 \%$
Static Current Limit	-125	± 110	+125	mA	$\begin{aligned} & \text { Output to }-1.5 \mathrm{~V}, \mathrm{VH}=6.5 \mathrm{~V} \text {, } \\ & \mathrm{VT}=0 \mathrm{~V} \end{aligned}$
Absolute Accuracy—VIH, VIL, VIT					
VIH Offset	-100	+30	+100	mV	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=0 \mathrm{~V}, \mathrm{VL}=-1.5 \mathrm{~V}, \\ & \mathrm{VT}=3 \mathrm{~V} \end{aligned}$
VIH Gain Error	0.98		1.02	V/V	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \\ & \mathrm{VL}=-1.5 \mathrm{~V}, \mathrm{VT}=3 \mathrm{~V} \end{aligned}$
VIH Linearity Error	-15	+5	+15	mV	Data $=\mathrm{VH}$ relative to line between 0 V to 5 V ; full range of $\mathrm{VIH}=-1.4 \mathrm{~V}$ to +6.5 V
VIL Offset	-100	+30	+100	mV	
VIL Gain Error	0.98		1.02	V/V	$\begin{aligned} & \text { Data }=\mathrm{L}, \mathrm{VL}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \\ & \mathrm{VH}=6.5 \mathrm{~V}, \mathrm{VT}=3 \mathrm{~V} \end{aligned}$
VIL Linearity Error	-15	+5	+15	mV	Data $=\mathrm{VH}$ relative to line between 0 V to 5 V ; full range of $\mathrm{VIH}=-1.4 \mathrm{~V}$ to +6.5 V
VIT Offset	-100	+30	+100	mV	$\begin{aligned} & \text { Data }=\mathrm{VT}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \\ & \mathrm{VH}=3 \mathrm{~V} \end{aligned}$
VIT Gain Error	0.98		1.02	V/V	$\begin{aligned} & \text { Data }=\mathrm{VT}, \mathrm{VT}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \\ & \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V} \end{aligned}$

ADATE206

Parameter	Min	Typ	Max	Unit
Settling Time to 15 mV				
Settling Time to 4 mV				
Rise and Fall Time Temperature Coefficient				
500 mV Swing				

ADATE206

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments	
Offset	-15		+15	mV	Common mode $=0 \mathrm{~V}$	
Gain Error		1		\% FSR	$\mathrm{V}_{\text {IN }}=-1.5 \mathrm{~V}$ to +6.5 V	
Linearity Error		3		mV	$\mathrm{V}_{\text {IN }}=-1.5 \mathrm{~V}$ to +6.5 V	
Single-Ended Logic Input Characteristics						
Threshold Voltage (CLLM)		CMOS		V		
Voltage Range	0		5.5	V		
Bias Current	-10	+160	+200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 3.3 \mathrm{~V}$	
Bias Current		260		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	
Digital Output Characteristics (VOH, VOL Levels)						
Logic 1	3.1	3.26	3.4	V	Terminated 50Ω to 3.3 V	
Logic 0	2.7	2.86	3.1	V	Terminated 50Ω to 3.3 V	
Differential Levels	350	400	450	mV	Terminated 50Ω to 3.3 V	
COMPARATOR AC SPECIFICATIONS						
Propagation Delay						
Input to Output		500			$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ p-p, $2 \mathrm{~V} / \mathrm{ns}$	
Propagation Delay Tempco		1.0		ps $/{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{Vp-p}, 2 \mathrm{~V} / \mathrm{ns}$	
Propagation Delay Change with Respect to						
PD vs. Duty Cycle		40			V IN $=0 \mathrm{~V}$ to $3 \mathrm{~V}, 2 \mathrm{~V} / \mathrm{ns}$, driver in VTERM, VIT $=0 \mathrm{~V}$, period $=10 \mathrm{~ns}$; $\mathrm{dc}=1 \mathrm{~ns}, 5 \mathrm{~ns}, 9 \mathrm{~ns}$	
Slew Rate: $1 \mathrm{~V} / \mathrm{ns}, 2 \mathrm{~V} / \mathrm{ns}, 3 \mathrm{~V} / \mathrm{ns}$		30		ps	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 3 V , driver in VTERM, $\mathrm{VIT}=0 \mathrm{~V}$	
Amplitude: $500 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}$		30		ps	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $500 \mathrm{mV}, 0 \mathrm{~V}$ to $1 \mathrm{~V}, 0 \mathrm{~V}$ to $3 \mathrm{~V}, 2 \mathrm{~V} / \mathrm{ns}$, driver in VTERM, $\mathrm{VIT}=0 \mathrm{~V}$	
Equivalent Input Rise Time		225		ps	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $1 \mathrm{~V},<50 \mathrm{ps}, 20 \%$ to 80% rise time, driver in VTERM $=$ 0 V	
Pulse-Width Linearity		20		ps	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $3 \mathrm{~V}, 2 \mathrm{~V} / \mathrm{ns}$; pulse width $=3 \mathrm{~ns}, 4 \mathrm{~ns}, 5 \mathrm{~ns}, 10 \mathrm{~ns}$; driver in VTERM, VIT $=0 \mathrm{~V}$	
Settling Time		5.5		ns	Settling to $\pm 8 \mathrm{mV}, \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ to 3 V , driver in VTERM, $\mathrm{VIT}=0 \mathrm{~V}$	
Minimum Pulse Width		1		ns	2 V terminated, 1 V at the comparator, driver in VTERM, $\mathrm{VIT}=0 \mathrm{~V}, 1 \mu \mathrm{~s}$ period, pulse width $=50 \mathrm{~ns}$ to 1 ns	
Hysteresis		6		mV	$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$, sweep CVL and CVH	
Comparator Propagation Delay Matching, HCOMP to LCOMP		50		ps	HCOMP rise to LCOMP rise, HCOMP fall to LCOMP fall	
LOAD DC SPECIFICATIONS						
Single-Ended Logic Input Characteristics						
Threshold Voltage (LDEN)		CMOS		V		
Voltage Range	0		5.5	V		
Bias Current	-10		+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 3.3 \mathrm{~V}$	
Input Characteristics						
VIOL Current Program Range	0.0		3.5	V	$\begin{aligned} & \text { VDUT }=-1.5 \mathrm{~V},+6.5 \mathrm{~V} ; \\ & \mathrm{IOL}=0 \mathrm{~mA} \text { to } 35 \mathrm{~mA} \end{aligned}$	
VIOH Current Program Range	0.0		3.5	V	$\begin{aligned} & \mathrm{VDUT}=-1.5 \mathrm{~V},+6.5 \mathrm{~V} ; \\ & \mathrm{IOH}=0 \mathrm{~mA} \text { to } 35 \mathrm{~mA} \end{aligned}$	
VIOH, VIOL Input Bias Current	-10		+10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VIOL}=0 \mathrm{~V}, 3.5 \mathrm{~V} ; \\ & \mathrm{VIOH}=0 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	
VDUT Range	-1.5		+6.5	V	\|VDUT - VCOM	$>1.0 \mathrm{~V}$

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
VDUT Range	-1.5		+6.5	V	$\text { VDUT - VCOM > } 1.0 \mathrm{~V} ;$ $\mathrm{IOH}=0 \mathrm{~mA} \text { to } 35 \mathrm{~mA}$
VDUT Range	-1.5		+6.5	V	$\begin{aligned} & \text { VCOM }- \text { VDUT }>1.0 \mathrm{~V} ; \\ & \text { IOL }=0 \mathrm{~mA} \text { to } 35 \mathrm{~mA} \end{aligned}$
Output characteristics					
Gain	9.5	10	10.5	mA/V	Slope of line between 5 mA and 30 mA
Load Offset, $10 \mathrm{OH}, \mathrm{IOL}_{\text {T }}$	-200		+200	$\mu \mathrm{A}$	IOH and IOL programmed at $20 \mathrm{mV}(200 \mu \mathrm{~A})$
Load Nonlinearity, $\mathrm{IOH}, \mathrm{IOL}_{T}$	-50		+50	$\mu \mathrm{A}$	Relative to a line from 5 mA to 30 mA ; IOL, IOH from $200 \mu \mathrm{~A}$ to 35 mA
Output Current Tempco, IOH, $\mathrm{IOL}_{\text {T }}$		± 3		$\mu \mathrm{A} / \mathrm{C}$	Measured at $\mathrm{IOH}, \mathrm{IOL}=30 \mathrm{~mA}$
VCOM Buffer (Through Bridge)					
VCOM Buffer Offset	-50	+3	+50	mV	$\mathrm{IOL}, \mathrm{IOH}=20 \mathrm{~mA}, \mathrm{VCOM}=0 \mathrm{~V}$
VCOM Buffer Bias Current	-10	+1	+10	$\mu \mathrm{A}$	$\mathrm{VCOM}=-1.5 \mathrm{~V}$ to +6.5 V
VCOM Buffer Gain	0.99	1	1.01		$\begin{aligned} & \text { IOL, } \mathrm{IOH}=20 \mathrm{~mA}, \\ & \text { VCOM }=-1.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \end{aligned}$
VCOM Buffer Linearity Error	-10	+1	+10	mV	$\mathrm{IOL}, \mathrm{IOH}=20 \mathrm{~mA}$, $\mathrm{VCOM}=-1.5 \mathrm{~V}$ to +6.5 V , relative to a line at 0 V and 5 V
Dynamic Performance					
Propagation Delay-Imax to INHIBIT				ns	$\begin{aligned} & \mathrm{VTT}=2 \mathrm{~V}, \mathrm{VCOM}=4 \mathrm{~V} / 0 \mathrm{~V}, \\ & \mathrm{IOL}=20 \mathrm{~mA}, \mathrm{IOH}=20 \mathrm{~mA} \end{aligned}$
INHIBIT to $\mathrm{I}_{\text {max }}$		2.3		ns	$\begin{aligned} & \mathrm{VTT}=2 \mathrm{~V}, \mathrm{VCOM}=4 \mathrm{~V} / 0 \mathrm{~V}, \\ & \mathrm{IOL}=20 \mathrm{~mA}, \mathrm{IOH}=20 \mathrm{~mA} \end{aligned}$
TOTAL FUNCTION					
Output Leakage Current	-1.5	+0.28	+1.5	$\mu \mathrm{A}$	$\begin{aligned} & \text { Driver }=I N H, \text { VDUT swept from } \\ & -1.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \end{aligned}$
Output Leakage Current, Low Leakage Mode	-200	10	+200	nA	$\begin{aligned} & \text { Driver }=I N H, \text { VDUT swept from } \\ & -1.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \end{aligned}$
Output Capacitance		2		pF	
Power Supplies ${ }^{5}$					
Total Supply Range			15.5	V	
Positive Supply, V¢c	9.75	10.0	10.25	V	
Negative Supply, V_{EE}	-5.25	-5.0	-4.75	V	
Positive Supply Current, Vcc	190	210	245	mA	Load enabled at 20 mA , driver is set to VIL $=0 \mathrm{~V}$
Negative Supply Current, V_{EE}	240	270	300	mA	Load enabled at 20 mA , driver is set to VIL $=0 \mathrm{~V}$
Total Power Dissipation	2.5	3.5	4	W	Load enabled at 20 mA , driver is set to VIL $=0 \mathrm{~V}$
Positive Supply Current Load Disabled, $\mathrm{V}_{\text {cc }}$	145	165	200	mA	Load enabled at 0 mA , driver is set to VIL $=0 \mathrm{~V}$
Negative Supply Current Load Disabled, $\mathrm{V}_{\text {EE }}$	190	220	250	mA	Load enabled at 0 mA , driver is set to VIL $=0 \mathrm{~V}$
Total Power Dissipation	1.8	2.8	3.3	W	Load enabled at 0 mA , driver is set to VIL $=0 \mathrm{~V}$
Temperature Sensor Gain Factor		10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	Five diodes in series

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Maximum Current for VCC	245 mA
Maximum Current for VEE	300 mA
Positive Supply Voltage (VCC to GND)	+10.5 V
Negative Supply Voltage (VEE to GND)	-5.5 V
Operating Temperature (Junction)	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD (Human Body Model)	$\pm 1500 \mathrm{~V}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

ADATE206

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCOM_1	Commutation Reference Voltage.
2	GNDREF_1	Reference GND for VIOL, VIOH.
3	VIOH_1	Program Voltage for IOH (Sink).
4	VIOL_1	Program Voltage for IOL (Source).
$\begin{aligned} & 5,12,20,21,36 \\ & 40,55,56,64,71 \\ & 76,79,83,93,97 \\ & 100 \end{aligned}$	GND	Device Ground.
6	D_INV_1	Driver Invert.
7	VIT_1	Driver Term Voltage Reference.
8	VIL_1	Driver Low Voltage Reference.
9	VIH_1	Driver High Voltage Reference.
10	CLAMPL_1	Low Clamp.
11	CLAMPH_1	High Clamp.
13	CLLM_1	Comparator Low Leakage Mode.
14	LDEN_1	Determines Whether LD Responds to DR_EN_1 or is Disabled (see Table 4).
15	VTEN_1	Low Speed Control Signal. When high, DR_EN_1 forces driver output to VIT. Otherwise, DR_EN_1 forces driver to high impedance (see Table 4).
$\begin{aligned} & 16,17,33,43,59 \\ & 60,84,87,92 \end{aligned}$	VEE	Negative Power Supply.
$\begin{aligned} & 1819,57,58,77, \\ & 78,89,98,99 \end{aligned}$	VCC	Positive Power Supply.
22	DR_DATA_P_1	High Speed Data Inputs. Sets high/low state of driver output (see Table 4).
23	DR_DATA_P_T_1	Termination Resistor for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
24	DR_DATA_N_T_1	Termination Resistors for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
25	DR_DATA_N_1	Complement of DR_DATA_P_1.
26	DR_EN_P_1	High Speed Enable Inputs. Multifunction depending on status of VTEN_1 and LDEN_1. Causes driver to enter/leave inhibit; driver to enter/leave termination mode; load to leave/enter inhibit (see Table 4).
27	DR_EN_P_T_1	Termination Resistor for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
28	DR_EN_N_T_1	Termination Resistor for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
29	DR_EN_N_1	Complement of DR_EN_P_1.
30,46		No Connect.
31	COMP_H_P_1	High Comparator Output.
32	COMP_H_N_1	Complement of COMP_H_P_1.
34	COMP_L_P_1	Low Comparator Output.
35	COMP_L_N_1	Complement of COMP_L_P_1.
37, 39	SLEW1, SLEW0	Logic Signals Controlling Driver Slew Rates for Both Drivers. 00 codes for maximum slew voltage; 11 codes for minimum slew voltage.
38	CMOS_VDD	CMOS Supply (Internal $\div 2=$ Single-Ended Logic Reference).
41	COMP_L_N_2	Complement of COMP_L_P_1.
42	COMP_L_P_2	Low Comparator Output.
44	COMP_H_N_2	Complement of COMP_H_P_1.
45	COMP_H_P_2	High Comparator Output.

Pin No.	Mnemonic	Description
47	DR_EN_N_2	Complement of DR_EN_P_2.
48	DR_EN_N_T_2	Complement of DR_EN_P_T_2.
49	DR_EN_P_T_2	Termination Resistor for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
50	DR_EN_P_2	High Speed Enable Input. Multifunction depending on status of VTEN_2 and LDEN_2. Causes driver to enter/leave inhibit; driver to enter/leave termination mode; load to leave/enter inhibit (see Table 4).
51	DR_DATA_N_2	Complement of DR_DATA_P_2.
52	DR_DATA_N_T_2	Complement of DR_DATA_P_T_2.
53	DR_DATA_P_T_2	Termination Resistor for HS Inputs. Opposite end of each 50Ω termination resistor goes to the appropriate signal.
54	DR_DATA_P_2	High Speed Data Input. Sets high/low state of driver output (see Table 4).
61	VTEN_2	Low Speed Control Signal. When high, DR_EN_2 forces driver output to VT; otherwise, DR_EN_2 forces driver to high impedance (see Table 4).
62	LDEN_2	Determines Whether LD Responds to DR_EN_2 or is Disabled (see Table 4).
63	CLLM_2	Comp Low Leakage Mode.
65	CLAMPL_2	Low Clamp.
66	CLAMPH_2	High Clamp.
67	VIH_2	Driver High Voltage Reference.
68	VIL_2	Driver Low Voltage Reference.
69	VIT_2	Driver Term Voltage Reference.
70	D_INV_2	Driver Invert.
72	VIOL_2	Program Voltage for IOL (Source).
73	VIOH_2	Program Voltage for IOH (Sink).
74	GNDREF_2	Reference GND forVIOL, VIOH.
75	VCOM_2	Commutation Reference Voltage.
80, 82, 94,96	GND/SHIELDS	Device Ground or Pin Shield.
81	DUT_2	Output/Input Pin.
85	CVH_2	Window High Reference Level.
86	CVL_2	Window Low Reference Level.
88	TEMP	Temperature Sense, Five Diode String, Reference to GND.
90	CVL_1	Window Low Reference Level.
91	CVH_1	Window High Reference Level.
95	DUT_1	Output/Input Pin.

ADATE206

TYPICAL PERFORMACE CHARACTERISTICS

Figure 3. Driver Large Signal Response

Figure 4. Driver Small Signal Response

Figure 5. Driver Trailing Edge Timing Error vs. Pulse Width

Figure 6. Driver VIH Linearity vs. Output

Figure 7. Driver VIL Linearity vs. Output

Figure 8. Driver VTERM Linearity vs. Output

Figure 9. Driver Gain vs. Temperature

Figure 10. Driver Offset vs. Temperature

Figure 11. Comparator Differential Output Response

Figure 12. Comparator Offset vs. Common-Mode Voltage

Figure 13. Comparator Schmoo at 1 ns Rise and Fall Time

Figure 14. Comparator Schmoo at 600 ps Rise and Fall Time

ADATE206

Figure 15. Comparator tpD vs. Pulse Width

Figure 16. Active Load Commutation Region

Figure 17. Active Load Linearity vs. IOH

Figure 18. Active Load Linearity vs. IOL

THEORY OF OPERATION

The ADATE206 has two general classes of logic inputs: differential inputs for controlling functions that generally need to be operated at high speed, and single-ended CMOS inputs for setting operating modes or other low speed functions. The differential inputs have a wide common-mode range that allows them to be used with a variety of logic families. The differential inputs can be used single-ended, with one input from each pair of inputs tied to a fixed reference. However, this makes precise timing more difficult to achieve.

These differential input pins provide 50Ω input termination resistors for use as desired. The single-ended inputs have an input range compatible with most logic families and are high impedance to make driving them very easy. The switching threshold for the single-ended inputs is preset to one-half of the voltage at the CMOS_VDD pin.

Table 4. Driver and Load Modes

LDEN (CMOS Single-Ended)	VTEN (CMOS Single-Ended)	DR_EN (High Speed Differential)	DR_DATA (High Speed Differential)	Driver Status	Load Status
0	0	0	X		High-Z
0	0	1	0	High-Z	
0	0	1	1	VIL	High-Z
0	1	0	0	VIH	High-Z
0	1	1	1	VIT	High-Z
0	1	0	0	VIL	High-Z
1	0	1	1	VIH	High-Z
1	0		High-Z	ON	
1	0		VIL	High-Z	

Table 5. Comparator Low Leakage Mode

Table 6. Rise/Fall Time Selection 3 V, 10\% to 90\%, Unterminated

Slew1	Slew0	Tr/Tf (ns)
0	0	0.7
0	1	0.95
1	0	1.4
1	1	2.8

Table 7. Comparator Logic Function

DUT Pin Voltage	Output States				
	COMP_L_P	COMP_L_N	COMP_H_P	COMP_H_N	
	$>$ CVH	1	0	1	0
<CVL	1	0	0	1	
$<$ CVVH	$>C V H$	0	1	0	

ADATE206

OUTLINE DIMENSIONS

Figure 19. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADATE206BSV	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100-$ Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]	SV-100-2

[^0]: ${ }^{1} 1 \mu \mathrm{~s}$ period, pulse width $=50 \mathrm{~ns}$ to 500 ps , pulse width measured when amplitude drops 10%.
 ${ }^{2}$ Measured at 50% of input amp to 50% of output amp.
 ${ }^{3}$ tpo measured from the 50% of enable signal to 50% of output.
 ${ }^{4}$ The low leakage mode of the comparator, controlled by VLLM input, reduces the leakage due to the comparator input. The comparator operates in this mode, but its bandwidth is compromised and is not guaranteed.
 ${ }^{5}$ Under no circumstances should the input voltages exceed the supply voltages.

