Data Sheet

FEATURES

1.5Ω on resistance

0.3Ω on-resistance flatness
0.1Ω on-resistance match between channels
Up to $\mathbf{4 0 0} \mathrm{mA}$ continuous current
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$
No V L supply required
3 V logic-compatible inputs
Rail-to-rail operation
14-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16-lead LFCSP

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Communication systems
Relay replacement

GENERAL DESCRIPTION

The ADG1404 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels designed on an i CMOS * process. i CMOS (industrial CMOS) is a modular manufacturing process that combines high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.
iCMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and batterypowered instruments.

FUNCTIONAL BLOCK DIAGRAM

The ADG1404 switches one of four inputs to a common output, D , as determined by the 3-bit binary address lines, $\mathrm{A} 0, \mathrm{~A} 1$, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. 2.6Ω maximum on resistance over temperature.
2. Minimum distortion.
3. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
4. 14-lead TSSOP and 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package.

Rev. B

ADG1404* Product Page Quick Links

Last Content Update: 10/05/2016

Comparable Parts \square

View a parametric search of comparable parts

Documentation \square

Application Notes

- AN-1024: How to Calculate the Settling Time and Sampling Rate of a Multiplexer
Data Sheet
- ADG1404: 1.5Ω On Resistance, $\pm 15 \mathrm{~V} / 12 \mathrm{~V} / \pm 5 \mathrm{~V}, 4: 1$, iCMOS Multiplexer Data Sheet

Reference Materials

Informational

- iCMOS Technology Enabling the $+/-10 \mathrm{~V}$ World

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

Design Resources

- ADG1404 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions \square
View all ADG1404 EngineerZone Discussions

Sample and Buy \square

Visit the product page to see pricing options

Technical Support느

Submit a technical question or find your regional support number

[^0]
TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
15 V Dual Supply 3
12 V Single Supply 4
5 V Dual Supply 5
REVISION HISTORY
9/2016-Rev. A to Rev. B
Changes to Figure 3 8
Updated Outline Dimensions 16
Changes to Ordering Guide 16
3/2009—Rev. 0 to Rev. A
Changes to Power Requirements, Idd, Digital Inputs $=5 \mathrm{~V}$Parameter, Table 13
Changes to Power Requirements, I_{DD}, Digital Inputs $=5 \mathrm{~V}$
Parameter, Table 2 4
Updated Outline Dimensions 16
Continuous Current, S or D 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Truth Table 8
Typical Performance Characteristics. 9
Terminology 12
Test Circuits 13
Outline Dimensions 16
Ordering Guide 16

SPECIFICATIONS

15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness ($\mathrm{R}_{\text {Flat(ON) }}$)	$\begin{aligned} & 1.5 \\ & 1.8 \\ & 0.1 \\ & 0.18 \\ & 0.3 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 0.19 \\ & 0.4 \end{aligned}$	$V_{D D}$ to $V_{S S}$ 2.6 0.21 0.45	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { see Figure } 22 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, Io, IS (On)	$\begin{aligned} & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.04 \\ & \pm 0.55 \\ & \pm 0.1 \\ & \pm 2 \end{aligned}$	± 2 ± 4 ± 4	$\begin{aligned} & \pm 12.5 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 24 \end{aligned}$
DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, $I_{\text {INL }}$ or $I_{\text {NH }}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	$V_{\text {min }}$ V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
```DYNAMIC CHARACTERISTICS }\mp@subsup{}{}{1 Transition Time, ttransition ton (EN) toff (EN) Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss Cs (Off) CD (Off) CD, Cs (On)```	$\begin{aligned} & 150 \\ & 180 \\ & 100 \\ & 120 \\ & 110 \\ & 135 \\ & 35 \\ & \\ & -20 \\ & 70 \\ & 82 \\ & 0.011 \\ & \\ & 55 \\ & -0.17 \\ & 23 \\ & 90 \\ & 170 \end{aligned}$	$\begin{aligned} & 220 \\ & 145 \\ & 165 \end{aligned}$	$\begin{aligned} & 250 \\ & 165 \\ & 185 \\ & 10 \end{aligned}$	ns typ   ns max   ns typ   ns max   ns typ   ns max   ns typ   ns min   pC typ   dB typ   dB typ   \% typ   MHz typ   dB typ   pF typ   pF typ   pF typ	
POWER REQUIREMENTS   IDD   IDD   Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 0.001 \\ & 170 \\ & 0.001 \end{aligned}$		1   285   1   $\pm 4.5 / \pm 16.5$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $V$ min/max	$\begin{aligned} & \text { VDD }=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

[^1]
## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance (Ron)   On-Resistance Match Between Channels ( $\Delta$ Ron)   On-Resistance Flatness (Relation)	$\begin{aligned} & 2.8 \\ & 3.5 \\ & 0.13 \\ & \\ & 0.21 \\ & 0.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 0.23 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 4.8 \\ & 0.25 \\ & \\ & 1.3 \end{aligned}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V} \mathrm{~S}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, $I_{D}$ (Off)   Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.55 \\ & \pm 0.03 \\ & \pm 0.55 \\ & \pm 0.1 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 4 \\ & \pm 4 \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; see Figure } 24 \end{aligned}$
DIGITAL INPUTS   Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$   Input Low Voltage, $\mathrm{V}_{\text {INL }}$   Input Current, linl or linh   Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$	0.001 3.5		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	$V$ min   $V$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {Gnd }}$ or $\mathrm{V}_{\text {di }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   Transition Time, $\mathrm{t}_{\text {transition }}$   ton (EN)   toff (EN)   Break-Before-Make Time Delay, tввм   Charge Injection   Off Isolation   Channel-to-Channel Crosstalk   -3 dB Bandwidth   Insertion Loss   $\mathrm{C}_{\mathrm{s}}$ (Off)   $C_{D}$ (Off)   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)	230 300 180 240 115 160 100 30 80 82 35 -0.3 39 150 217	375 295 190	430   335   220   10	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS   ID IDD $V_{D D}$	0.001 170		$\begin{aligned} & 1 \\ & 285 \\ & 5 / 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu A$ typ   $\mu \mathrm{A}$ max   V min/max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=5 \mathrm{~V} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \hline \end{aligned}$

[^2]ADG1404

## 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{D D}$ to $V_{S S}$	V	
On Resistance (Ron)	3.3			$\Omega$ typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 22
	4	4.9	5.4	$\Omega$ max	$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{5 S}=-4.5 \mathrm{~V}$
On-Resistance Match Between Channels ( $\Delta$ Ron)	0.13			$\Omega$ typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
On-Resistance Flatness (Rflation)	0.22	0.23	0.25	$\Omega$ max	
	0.9			$\Omega$ typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{5}=-10 \mathrm{~mA}$
	1.1	1.24	1.31	$\Omega$ max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
	$\pm 0.02$			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
	$\pm 0.2$	$\pm 1$	$\pm 12.5$	nA max	
Drain Off Leakage, lo (Off)	$\pm 0.02$			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
Channel On Leakage, $\mathrm{I}_{\mathrm{D},} \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\pm 0.25$	$\pm 1.2$	$\pm 15$	nA max	
	$\pm 0.05$			nA typ	$\mathrm{V}_{5}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 24
	$\pm 0.25$	$\pm 1.5$	$\pm 20$	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	$V$ min	
Input Low Voltage, VINL Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{NH}}$			0.8	$\checkmark$ max	
	0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$			$\pm 0.1$	$\mu \mathrm{A}$ max	
	35			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, $\mathrm{t}_{\text {transition }}$	340			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	470	560	615	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; Figure 29
ton (EN)	260			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	355	430	480	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; Figure 31
$\mathrm{t}_{\text {off ( }}(\mathrm{EN})$	220			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	315	365	400	ns max	$\mathrm{V}_{5}=3 \mathrm{~V}$; Figure 31
Break-Before-Make Time Delay, t $_{\text {вв }}$	100			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			50	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=3 \mathrm{~V}$; see Figure 30
Charge Injection	30			pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 32
Off Isolation	80			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ $\text { see Figure } 25$
Channel-to-Channel Crosstalk	82			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ $\text { see Figure } 27$
-3 dB Bandwidth	40			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26
Insertion Loss	0.27			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 26
Total Harmonic Distortion + Noise	0.03			\% typ	$\mathrm{R}_{\mathrm{L}}=110 \Omega, 2.5 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ;$ $\text { see Figure } 28$
$\mathrm{C}_{5}$ (Off)	33			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}$ (Off)	128			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	210			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$
ID	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{DD}}$
			1	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	$\checkmark$ min/max	GND $=0 \mathrm{~V}$

[^3]CONTINUOUS CURRENT, S OR D
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D ${ }^{1}$					
15 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
ADG1404 TSSOP	350	220	100	mA max	
ADG1404 LFCSP	450	300	140	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
ADG1404 TSSOP	300	220	100	mA max	
ADG1404 LFCSP	400	300	140	mA max	
5 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-4.5 \mathrm{~V}$
ADG1404 TSSOP	300	220	100	mA max	
ADG1404 LFCSP	400	300	140	mA max	

[^4]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$V_{\text {dD }}$ to V $\mathrm{V}_{\text {S }}$	35 V
Vod to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30$   mA , whichever occurs first
Digital Inputs	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	600 mA (pulsed at 1 ms , $10 \%$ duty cycle maximum)
Continuous Current, S or D ${ }^{2}$	Data + 15\%
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
14-Lead TSSOP, $\theta_{\mathrm{JA}}$ Thermal Impedance (4-layer board)	$112^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, $\theta_{\mathrm{JA}}$ Thermal Impedance	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260(+0 /-5)^{\circ} \mathrm{C}$

[^5]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 2. TSSOP Pin Configuration


NOTES

Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off.   When this pin is high, the Ax logic inputs determine the on switches.   3
4	1	V SS	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. Can be an input or an output.
5	4	S2	Source Terminal. Can be an input or an output.
6	6	D	Drain Terminal. Can be an input or an output.
7 to 9	$2,5,7,8,13$	NC	No Connection.
10	9	S4	Source Terminal. Can be an input or an output.
11	10	S3	Source Terminal. Can be an input or an output.
12	11	VDD	Most Positive Power Supply Potential.
13	12	GND	Ground (O V) Reference.
14	14	A1	Logic Control Input.

## TRUTH TABLE

Table 7.

EN	A1	A0	S1	S2	S3	S4
0	X	X	Off	Off	Off	Off
1	0	1	On	Off	Off	Off
1	1	0	Off	On	Off	Off
1	1	1	Off	Off	On	Off
1		Off	Off			

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply


Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply


Figure 6. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Single Supply


Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 15 V Dual Supply


Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 5 V Dual Supply


Figure 9. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply


Figure 10. Leakage Currents as a Function of Temperature, 15 V Dual Supply


Figure 11. Leakage Currents as a Function of Temperature, 5 V Dual Supply


Figure 12. Leakage Currents as a Function of Temperature, 12 V Single Supply


Figure 13. I ID vs. Logic Level


Figure 14. Charge Injection vs. Source Voltage


Figure 15. Transition Times vs. Temperature


Figure 16. Off Isolation vs. Frequency


Figure 17. Crosstalk vs. Frequency


Figure 18. On Response vs. Frequency


Figure 19. $T H D+N$ vs. Frequency at $\pm 15 \mathrm{~V}$


Figure 20. $\mathrm{THD}+\mathrm{N}$ vs. Frequency at $\pm 5 \mathrm{~V}$


Figure 21. ACPSRR vs. Frequency

## TERMINOLOGY

$\mathrm{I}_{\mathrm{DD}}$
The positive supply current.
Iss
The negative supply current.

## $V_{D}\left(V_{s}\right)$

The analog voltage on Terminal D and Terminal S .
$R_{\text {ON }}$
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {flat(on) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
IS (Off)
The source leakage current with the switch off.

## $I_{D}$ (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}$ (On)
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathbf{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
The input current of the digital input.
Cs (Off)
The off switch source capacitance, which is measured with reference to ground.

## $\mathrm{C}_{\mathrm{d}}$ (Off)

The off switch drain capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
The on switch capacitance, which is measured with reference to ground.

## $\mathrm{C}_{\text {IN }}$

The digital input capacitance.
$\mathbf{t}_{\text {transition }}$
The delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition when switching from one address state to another.
$t_{\text {on }}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 29, Test Circuit 4.
toff (EN)
The delay between applying the digital control input and the output switching off.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

## ACPSRR (AC Power Supply Rejection Ratio)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

## TEST CIRCUITS



Figure 22. On Resistance


Figure 23. Off Leakage


Figure 24. On Leakage


Figure 25. Off Isolation


Figure 26. Bandwidth


Figure 27. Channel-to-Channel Crosstalk


Figure 28. THD + Noise


Figure 29. Address to Output Switching Times


Figure 30. Break-Before-Make Time Delay


## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 33. 14-Lead Thin Shrink Small Outline Package [TSSOP] ( $R U-14$ )
Dimension shown in millimeters


# COMPLIANT TO JEDEC STANDARDS MO-220-wGGC. 

Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-26)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1404YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$14-$ Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1404YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1404YCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1404YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

[^6]
[^0]:    * This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^4]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^5]:    ${ }^{1}$ Overvoltages at $\mathrm{IN}, \mathrm{S}$, and D are clamped by internal diodes. Current must be
    limited to the maximum ratings given.
    ${ }^{2}$ See data given in Table 4.

[^6]:    ${ }^{1} Z=$ RoHS Compliant Part.

