

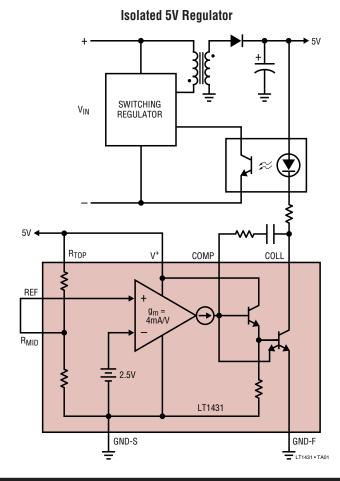
Programmable Reference

FEATURES

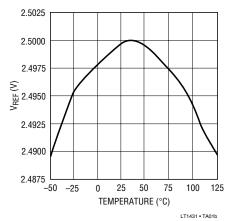
- Guaranteed 0.4% Initial Voltage Tolerance
- 0.1Ω Typical Dynamic Output Impedance
- Fast Turn On
- Sink Current Capability, 1mA to 100mA
- Low Reference Pin Current
- Available in N8, S8 or 3-Lead TO-92 Z Packages

APPLICATIONS

- Linear Regulators
- Adjustable Power Supplies
- Switching Power Supplies


TYPICAL APPLICATION

DESCRIPTION

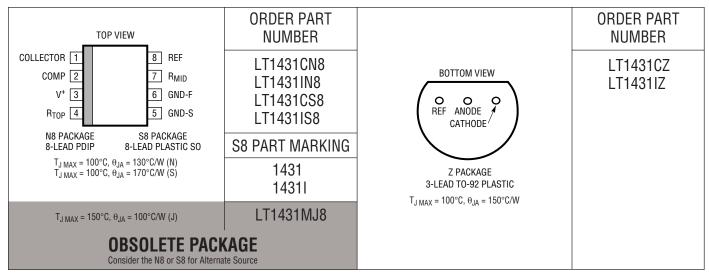

The LT[®]1431 is an adjustable shunt voltage regulator with 100mA sink capability, 0.4% initial reference voltage tolerance and 0.3% typical temperature stability. On-chip divider resistors allow the LT1431 to be configured as a 5V shunt regulator, with 1% initial voltage tolerance and requiring no additional external components. By adding two external resistors, the output voltage may be set to any value between 2.5V and 36V. The nominal internal current limit of 100mA may be decreased by including one external resistor.

A simplified 3-pin version, the LT1431CZ/LT1431IZ, is available for applications as an adjustable reference and is pin compatible with the TL431.

LTC and LT are registered trademarks of Linear Technology Corporation.

V_{REF} vs Temperature

Downloaded from Arrow.com.


ABSOLUTE MAXIMUM RATINGS (Note 1)

V ⁺ , V _{COLLECTOR}	
V _{COMP} , R _{TOP} , R _{MID} , V _{RFF}	
GND-F to GND-S	0.7V
Ambient Temperature Range	
LT1431M (OBSOLETE)	55°C to 125°C
LT1431I	40°C to 85°C
LT1431C	0°C TO 70°C

JunctionTemperature Range

LT1431M (OBSOLETE)	-55°C to 150°C
LT14311	-40°C to 100°C
LT1431C	0°C to 100°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

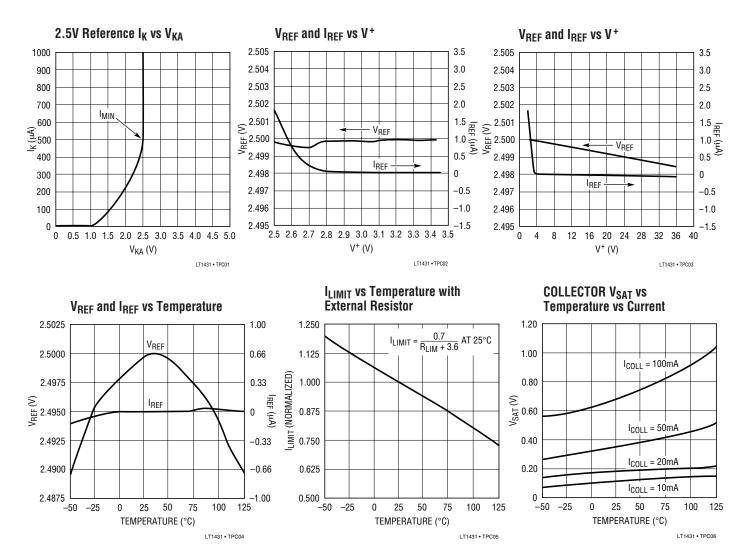
Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. I_K = 10mA unless otherwise specified (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LT1431 Min typ	M/I Max	LT143 Min Typ	1C Max	UNITS
V _{REF}	Reference Voltage	$V_{KA} = 5V, I_K = 2mA, (Note 3)$	•	2.490 2.500 2.465	2.510 2.535	2.490 2.500 2.480	2.510 2.520	V V
$\Delta V_{\text{REF}} / \Delta T$	Reference Drift	V _{KA} = 5V, I _K = 2mA	٠	50		30		ppm/°C
$\Delta V_{\text{REF}} / \Delta V_{\text{KA}}$	Voltage Ratio, Reference to Cathode (Open-Loop Gain)	$I_{\rm K}$ = 2mA, $V_{\rm KA}$ = 3V to 36V	•	0.2	0.5	0.2	0.5	mV/V
I _{REF}	Reference Input Current	V _{KA} = 5V, T _A = 25°C	•	0.2	1.0 1.5	0.2	1.0 1.2	μΑ μΑ
I _{MIN}	Minimum Operating Current	V _{KA} = V _{REF} to 36V		0.6	1.0	0.6	1.0	mA
I _{OFF}	Off-State Cathode Current	V _{KA} = 36V, V _{REF} = 0V	•		1 15		1 2	μΑ μΑ
I _{LEAK}	Off-State Collector Leakage Current	V _{COLL} = 36V, V ⁺ = 5V, V _{REF} = 2.4V	•		1 5		1 2	μΑ μΑ
Z _{KA}	Dynamic Impedance	$V_{KA} = V_{REF}$, $I_K = 1$ mA to 100mA, f \leq 1kHz			0.2		0.2	Ω
I _{LIM}	Collector Current Limit	V _{KA} = V _{REF} + 50mV		80	360	100	260	mA
	5V Reference Output	Internal Divider Used, I _K = 2mA		4.950 5.000	5.050	4.950 5.000	5.050	V

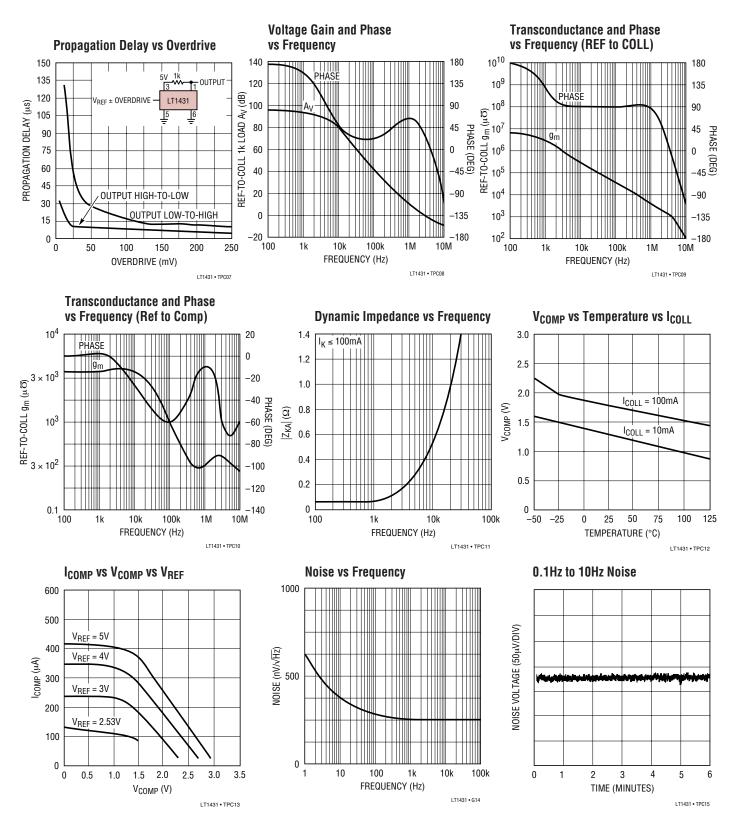
2 Downloaded from Arrow.com.

1413fc


ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: V_{KA} is the cathode voltage of the LT1431CZ/IZ and corresponds to V⁺ of the LT1431CN8/IN8/CS8/IS8. I_K is the cathode current of the LT1431CZ/IZ and corresponds to I(V⁺) + I_{COLLECTOR} of the LT1431CN8/IN8/CS8/IS8.


Note 3: The LT1431 has bias current cancellation which is effective only for $V_{KA} \ge 3V$. A slight ($\approx 2mV$) shift in reference voltage occurs when V_{KA} drops below 3V. For this reason, these tests are not performed at $V_{KA} = V_{REF}$.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1413fc

PIN FUNCTIONS

COLL (Pin 1): Open collector of the output transistor. The maximum pin voltage is 36V. The saturation voltage at 100mA is approximately 1V.

COMP (Pin 2): Base of the driver for the output transistor. This pin allows additional compensation for complex feedback systems and shutdown of the regulator. It must be left open if unused.

V⁺ (Pin 3): Bias voltage for the entire shunt regulator. The maximum input voltage is 36V and the minimum to operate is equal to V_{REF} (2.5V). The quiescent current is typically 0.6mA.

R_{TOP} (Pin 4): Top of the on-chip 5k-5k resistive divider that guarantees 1% accuracy of operation as a 5V shunt regulator with no external trim. The pin is tied to COLL for self-contained 5V operation. It may be left open if unused. See note on parasitic diodes below.

GND-S (Pin 5): Ground reference for the on-chip resistive divider and shunt regulator circuitry except for the output transistor. This pin allows external current limit of the output transistor with one resistor between GND-F (force) and GND-S (sense).

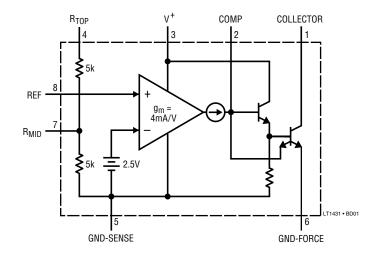
GND-F (Pin 6): Emitter of the output transistor and substrate connection for the die.

 R_{MID} (Pin 7): Middle of the on-chip resistive divider string between R_{TOP} and GND-S. The pin is tied to REF for self-contained 5V operation. It may be left open if unused.

REF (Pin 8): Control pin of the shunt regulator with a 2.5V threshold. If $V^+ > 3V$, input bias current cancellation reduces I_B to 0.2µA typical.

COMP, R_{TOP} , R_{MID} , and REF have static discharge protection circuits that must not be activated on a continuous basis. Therefore, the absolute maximum DC voltage on these pins is 6V, well beyond the normal operating conditions.

As with all bipolar ICs, the LT1431 contains parasitic diodes which must not be forward biased or else anomalous behavior will result. Pin conditions to be avoided are R_{TOP} below R_{MID} in voltage and any pin below GND-F in voltage (except for GND-S).


The following pin definitions apply to the Z package.

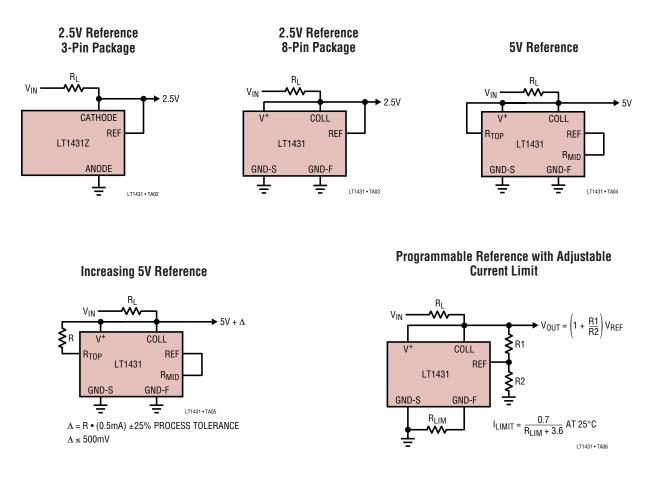
CATHODE: Corresponds to COLL and V⁺ tied together.

ANODE: Corresponds to GND-S and GND-F tied together.

REF: Corresponds to REF.

BLOCK DIAGRAM

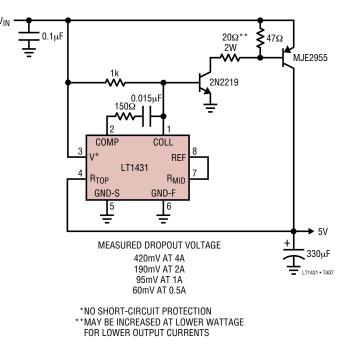
APPLICATIONS INFORMATION

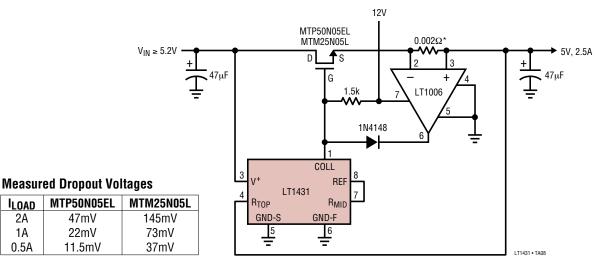

Frequency Compensation

As a shunt regulator, the LT1431 is stable for all capacitive loads on the COLL pin. Capacitive loading between 0.01μ F and 18μ F causes reduced phase margin with some ringing under transient conditions. Output capacitors should not be used arbitrarily because output noise is not necessarily reduced.

Excess capacitance on the REF pin can introduce enough phase shift to induce oscillation when configured as a reference >2.5V. This can be compensated with capacitance between COLL and REF (phase lead). More complicated feedback loops may require shaping of the frequency response of the LT1431 with dominant pole or pole-zero compensation. This can be accomplished with a capacitor or series resistor and capacitor between COLL and COMP.

The compensation schemes mentioned above use voltage feedback to stabilize the circuits. There must be voltage gain at the COLL pin for them to be effective, so the COLL pin must see a reasonable AC impedance. Capacitive loading of the COLL pin reduces the AC impedance, voltage gain, and frequency response, thereby decreasing the effectiveness of the compensation schemes, but also decreasing their necessity.


TYPICAL APPLICATIONS


6 Downloaded from Arrow.com.

TYPICAL APPLICATIONS

PNP Low Dropout 5V Regulator*

FET Low Dropout 5V Regulator with Current Limit

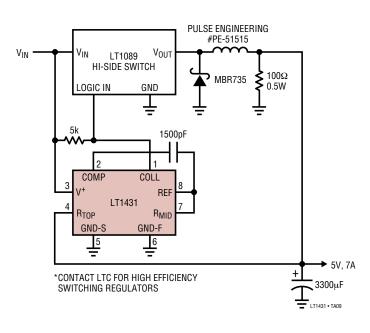
*1.5" #23 SOLID COPPER WIRE

 ${\sim}0.002\Omega \rightarrow {\rm 3A~LIMIT}$

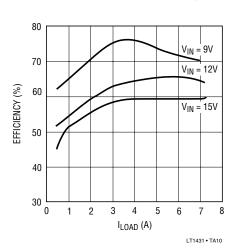
ILOAD

2A

1A

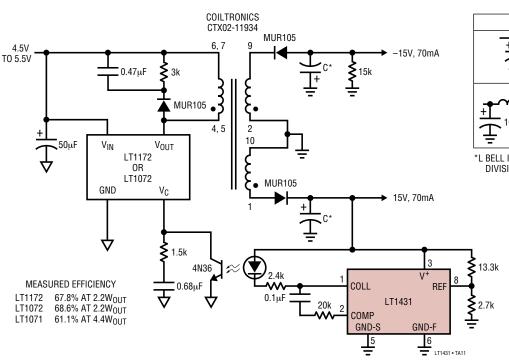

0.5A

47mV


22mV

11.5mV

TYPICAL APPLICATIONS



12V to 5V Buck Converter with Foldback Current Limit*

Buck Converter Efficiency

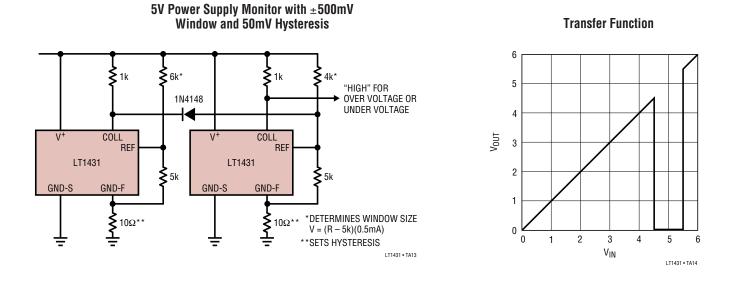
Fully Loaded Output Ripple vs Filtering

Isolated 5V to \pm 15V Flyback Converter

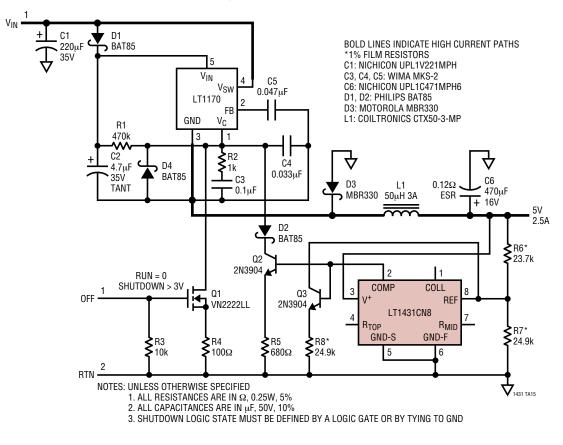
 C*
 LT1172
 LT1072

 ++
 210μF
 30mV_{P-P}
 40mV_{P-P}

 ++
 100μF
 6mV_{P-P}
 8mV_{P-P}

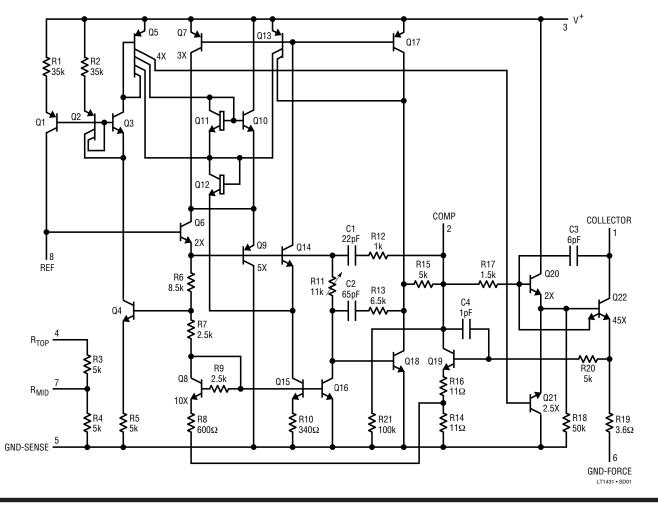

 *L BELL INDUSTRIES J.W. MILLER DIVISION 9310-36 10μH, 450mA
 LT1431+TA12

B Downloaded from Arrow.com.

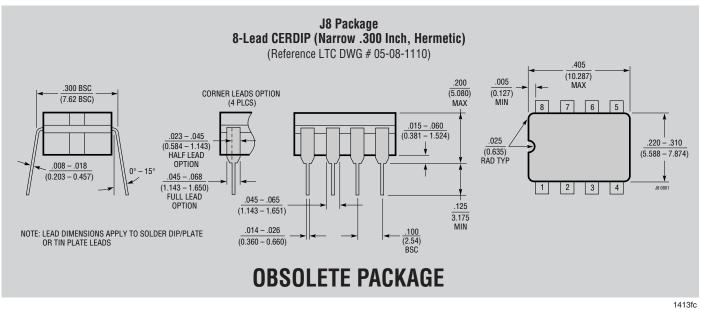


1413fc

TYPICAL APPLICATIONS

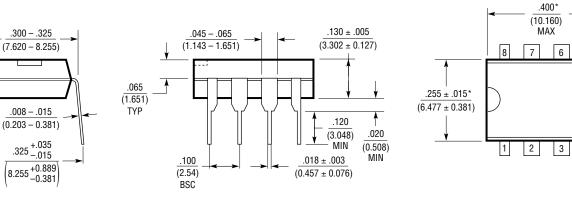


High Efficiency Buck Converter E = 85% to 89%



SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

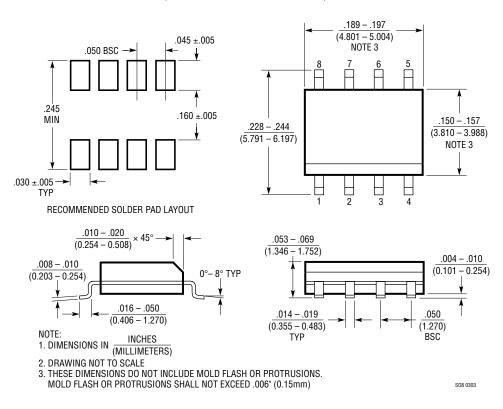


5

4

N8 1002

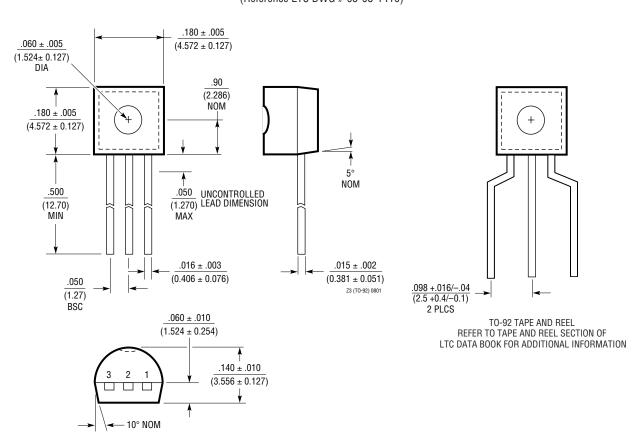
PACKAGE DESCRIPTION



N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)

NOTE:

NOTE: 1. DIMENSIONS ARE <u>INCHES</u> *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)



Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION

Z Package 3-Lead Plastic TO-92 (Similar to TO-226) (Reference LTC DWG # 05-08-1410)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC [®] 3722	Synchronous Full-Bridge Controller	Zero Voltage Switching, Adjustable 2V _S Timing
LTC3723	Synchronous Push-Pull PWM Controller	1.5A Sink, 1A Source Output Drivers, Adjustable Dead Time
LTC3803	SOT-23 Flyback Controller	Adjustable Slope Compensation, 200kHz Operation
LTC3806	Synchronous Flyback Controller	Excellent Cross Regulation, High Efficiency
LTC3900/LTC3901	Synchronous Rectifiers for Forward and Push-Pull Converters	Programmable Time Out, Reverse Inductor Current Sense
LT4430	Optocoupler Driver in SOT-23	Overshoot Control, 600mV Reference, High Bandwidth Error Amplifier

