

Ultralow Noise VGA with Preamplifier and Programmable R_{IN}

Enhanced Product AD8331-EP

FEATURES

Ultralow noise preamplifier (preamp)
Input voltage noise: 0.74 nV/√Hz typical
Input current noise: 2.5 pA/√Hz typical
-3 dB small signal bandwidth: 120 MHz typical
Low power dissipation: 125 mW typical
Wide gain range with programmable postamp
-4.5 dB to +43.5 dB in low gain mode
7.5 dB to 55.5 dB in high gain mode
Low output-referred noise: 48 nV/√Hz typical
Active input impedance matching
Optimized for 10-bit/12-bit ADCs
Selectable output clamping level
Single 5 V supply operation

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications
(AQEC standard)

Extended industrial temperature range: -55°C to +105°C
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

APPLICATIONS

Radars

Ultrasound and sonar time-gain controls
High performance automatic gain control (AGC) systems
In-phase quadrature (I/Q) signal processing
High speed ADC drivers

GENERAL DESCRIPTION

The AD8331-EP is a single-channel, ultralow noise, linear in dB, variable gain amplifier (VGA). Optimized for ultrasound systems, the device is usable as a low noise variable gain element at frequencies up to 120 MHz.

Included in the channel are an ultralow noise preamp (LNA), an X-AMP* VGA with 48 dB of gain range, and a selectable gain postamp with adjustable output limiting. The LNA gain is 19 dB with a single-ended input and differential outputs. Using a single resistor, the LNA input impedance can be adjusted to match a signal source without compromising noise performance.

FUNCTIONAL BLOCK DIAGRAM

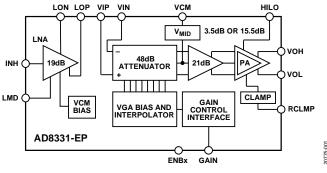


Figure 1.

The 48 dB gain range of the VGA makes this device suitable for a variety of applications. Excellent bandwidth uniformity is maintained across the entire range. The gain control interface provides precise linear in dB scaling of 50 dB/V for control voltages between 100 mV and 0.95 V. Factory trim ensures excellent part to part gain matching.

Differential signal paths result in superb second- and thirdorder distortion performance and low crosstalk.

The low output referred noise of the VGA is advantageous in driving high speed differential analog-to-digital converters (ADCs). The gain of the post amplifier (PA) can be pin selected to 3.5 dB or 15.5 dB to optimize gain range and output noise for 12-bit or 10-bit converter applications. The output can be limited to a user selected clamping level, preventing input overload to a subsequent ADC. An external resistor adjusts the clamping level.

The operating temperature is specified across the -55° C to $+105^{\circ}$ C extended industrial range.

Additional application and technical information can be found in the AD8331 data sheet.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2019 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features	I
Enhanced Product Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	6

rower Derating Curves
· ·
Thermal Resistance
ESD Caution.
Pin Configuration and Function Descriptions
Typical Performance Characteristics
Outline Dimensions
Outilité Dinicisions
Ordering Guide

REVISION HISTORY

5/2019—Revision 0: Initial Version

Enhanced Product AD8331-EP

SPECIFICATIONS

 $T_A = 25$ °C, supply voltage (Vs) = 5 V, load resistance (R_L) = 500 Ω , source resistance (R_S) = input resistance (R_{IN}) = 50 Ω , shunt feedback resistance (R_{IZ}) = 280 Ω , input shunt capacitance (C_{SH}) = 22 pF, frequency (f) = 10 MHz, RCLMP = ∞ , load capacitance (C_L) = 1 pF, VCM pin floating, -4.5 dB to +43.5 dB gain (HILO = low), and differential output voltage, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min Typ	Max	Unit ¹
LNA CHARACTERISTICS				
Gain	Single-ended input to differential output	19		dB
	Input to output (single-ended)	13		dB
Input Voltage Range	AC-coupled	±275		mV
Input Resistance	$R_{IZ} = 280 \Omega$	50		Ω
	$R_{IZ} = 412 \Omega$	75		Ω
	$R_{IZ} = 562 \Omega$	100		Ω
	$R_{IZ} = 1.13 \text{ k}\Omega$	200		Ω
	$R_{IZ} = \infty$	6		kΩ
Input Capacitance		13		pF
Output Impedance	Single-ended, either output	5		Ω
–3 dB Small Signal Bandwidth	Output voltage $(V_{OUT}) = 0.2 \text{ V p-p}$	130		MHz
Slew Rate		650		V/µs
Input Voltage Noise	$R_S = 0 \Omega$, high or low gain mode, $R_{IZ} = \infty$, $f = 5 \text{ MHz}$	0.74		nV/√Hz
Input Current Noise	$R_{IZ} = \infty$, high or low gain mode, $f = 5$ MHz	2.5		pA/√Hz
Noise Figure	f = 10 MHz, LOP output			
Active Termination Match	$R_S = R_{IN} = 50 \Omega$	3.7		dB
Unterminated	$R_S = 50 \Omega$, $R_{IZ} = \infty$	2.5		dB
Harmonic Distortion at LOP	$V_{OUT} = 0.5 \text{ V p-p, single-ended, f} = 10 \text{ MHz}$			
Second Harmonic Distortion (HD2)		-56		dBc
Third Harmonic Distortion (HD3)		-70		dBc
Output Short-Circuit Current	Pin LON, Pin LOP	165		mA
LNA AND VGA CHARACTERISTICS				
–3 dB Signal Bandwidth				
Small	$V_{OUT} = 0.2 V p-p$	120		MHz
Large	V _{оит} = 2 V p-p	110		MHz
Slew Rate				
	Low gain mode	300		V/µs
	High gain mode	1200		V/µs
Input Voltage Noise	$R_S = 0 \Omega$, high or low gain mode, $R_{IZ} = \infty$, $f = 5 \text{ MHz}$	0.82		nV/√Hz
Noise Figure	Gain voltage (V _{GAIN}) = 1.0 V			
Active Termination Match	$R_S = R_{IN} = 50 \Omega$, $f = 10 MHz$, measured	4.15		dB
	$R_S = R_{IN} = 200 \Omega$, $f = 5 MHz$, simulated	2.0		dB
Unterminated	$R_S = 50 \Omega$, $R_{IZ} = \infty$, $f = 10 MHz$, measured	2.5		dB
	$R_S = 200 \Omega$, $R_{IZ} = \infty$, $f = 5$ MHz, simulated	1.0		dB
Output Referred Noise				1
	$V_{GAIN} = 0.5 V$, low gain mode	48		nV/√Hz
	$V_{GAIN} = 0.5 V$, high gain mode	178		nV/√Hz
Output Impedance, Postamplifier	DC to 1 MHz	1		Ω

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit ¹
Output Signal Range, Postamplifier	$R_L \ge 500 \Omega$, unclamped, either pin		$V_{\text{CM}} \pm 1.125$		٧
Differential			4.5		V p-p
Output Offset Voltage					
	Differential, $V_{GAIN} = 0.5 V$	-50	±5	+50	mV
	Common mode	-125	-25	+100	mV
Output Short-Circuit Current			45		mA
Harmonic Distortion	$V_{GAIN} = 0.5 \text{ V}$, $V_{OUT} = 1 \text{ V p-p}$, high gain mode				
HD2	f = 1 MHz		-88		dBc
HD3			-85		dBc
HD2	f = 10 MHz		-68		dBc
HD3			-65		dBc
Input 1 dB Compression Point	$V_{GAIN} = 0.25 \text{ V}, V_{OUT} = 1 \text{ V p-p}, f = 1 \text{ MHz to}$ 10 MHz		1		dBm
Two-Tone Intermodulation Distortion (IMD3)	$V_{OUT} = 1 V p-p$				
	$V_{GAIN} = 0.72 \text{ V, } f = 1 \text{ MHz}$		-80		dBc
	$V_{GAIN} = 0.5 \text{ V, f} = 10 \text{ MHz}$		-72		dBc
Output Third-Order Intercept	$V_{GAIN} = 0.5 \text{ V, } V_{OUT} = 1 \text{ V p-p}$				
	f = 1 MHz		38		dBm
	f = 10 MHz		33		dBm
Overload Recovery	$V_{GAIN} = 1.0 \text{ V, input voltage (V}_{IN}) = 50 \text{ mV p-p/}$ 1 V p-p, f = 10 MHz		5		ns
Group Delay Variation	5 MHz < f < 50 MHz, full gain range		±2		ns
ACCURACY					
Absolute Gain Error ²	$0.05 V < V_{GAIN} < 0.10 V$	-1	+0.5	+2	dB
	$0.10 V < V_{GAIN} < 0.95 V$	-1	±0.3	+1	dB
	$0.95 \text{ V} < V_{GAIN} < 1.0 \text{ V}$	-2	-1	+1	dB
Gain Law Conformance ³	$0.1 \text{V} < \text{V}_{\text{GAIN}} < 0.95 \text{V}$		±0.2		dB
GAIN CONTROL INTERFACE	GAIN pin				
Gain Scaling Factor	$0.10 \text{ V} < V_{GAIN} < 0.95 \text{ V}$	48.5	50	51.5	dB/V
Post Amplifier Gain	Low gain mode (HILO = low)		3.5		dB
·	High gain mode (HILO = high)		15.5		dB
Gain Range	Low gain mode		-4.5 to +43.5		dB
	High gain mode		7.5 to 55.5		dB
Input Voltage (V _{GAIN}) Range	_		0 to 1.0		V
Input Impedance			10		ΜΩ
Response Time	48 dB gain change to 90% full scale		500		ns
COMMON-MODE INTERFACE	VCM pin				
Input Resistance ⁴	Current limited to ±1 mA		30		Ω
Output Common-Mode Offset Voltage	Common-mode voltage $(V_{CM}) = 2.5 \text{ V}$	-125	-25	+100	mV
Voltage Range	$V_{OUT} = 2.0 \text{ V p-p}$		1.5 to 3.5		٧
ENABLE INTERFACE	ENBL AND ENBV pins				
Logic Level to Enable Power	r · ·	2.25		5	V
Logic Level to Disable Power		0		1.0	V
Input Resistance	ENB pin		25		kΩ
,	ENBL pin		40		kΩ
	ENBV pin		70		kΩ
Power-Up Response Time	$V_{\text{INH}} = 30 \text{ mV p-p}$		300		μs
	$V_{\text{INH}} = 150 \text{ mV p-p}$		4		ms

Enhanced Product AD8331-EP

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit1
HILO GAIN RANGE INTERFACE	HILO pin				
Logic Level to Select Gain Range					
High		2.25		5	V
Low		0		1.0	V
Input Resistance			50		kΩ
OUTPUT CLAMP INTERFACE	RCLMP pin, high or low gain				
Accuracy	$V_{OUT} = 1 V p-p (clamped)$				
HILO = Low	$RCLMP = 2.74 k\Omega$		±50		mV
HILO = High	$RCLMP = 2.21 \text{ k}\Omega$		±75		mV
MODE INTERFACE	MODE pin				
Logic Level for Gain Slope					
Positive		0		1.0	V
Negative		2.25		5	V
Input Resistance			200		kΩ
POWER SUPPLY	VPSL and VPOS pins				
Supply Voltage		4.5	5.0	5.5	V
Quiescent Current		20	25		mA
Power Dissipation	No signal		125		mW
Power-Down Current	VGA and LNA disabled	50	240	400	μΑ
LNA Current (ENBL)		7.5	11	15	mA
VGA Current (ENBV)		7.5	14	20	mA
Power Supply Rejection Ratio	$V_{GAIN} = 0 \text{ V, } f = 100 \text{ kHz}$		-68		dB

 $^{^1}$ All dBm values are referred to 50 $\Omega.$ 2 The absolute gain refers to the theoretical gain expression in Equation 1 of the AD8331 data sheet. 3 Best fit to linear in dB curve. 4 The current is limited to ± 1 mA typical.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Voltage	
Supply Voltage (VPSL, VPOS)	5.5 V
Input Voltage (INH)	V _S + 200 mV
ENBL, ENBV, HILO Voltage	V _s + 200 mV
GAIN Voltage	2.5 V
Power Dissipation	See Figure 2
Temperature	
Extended Industrial Range	−55°C to +105°C
Junction Temperature (T _J)	125°C
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

POWER DERATING CURVES

Figure 2 shows the maximum power dissipation vs. ambient temperature.

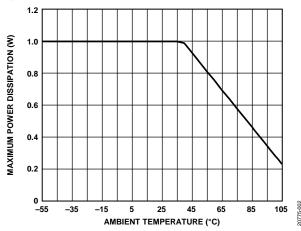


Figure 2. Maximum Power Dissipation vs. Ambient Temperature

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JC} is the junction to case thermal resistance measured at package top.

Table 3. Thermal Resistance

Package Type	θ_{JA}^{1}	θ_{JC}^2	Unit
RQ-20	86	34	°C/W

¹ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD-51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Thermal impedance simulated values are based on a JEDEC 1S0P thermal test board. See JEDEC JESD-51.

Enhanced Product AD8331-EP

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

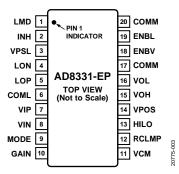


Figure 3. Pin Configuration

Table 4. Pin Function Description

Pin No.	Mnemonic	Description
1	LMD	LNA Midsupply Bypass Pin. Connect a capacitor to LMD to achieve a midsupply high frequency bypass.
2	INH	LNA Input.
3	VPSL	LNA 5 V Supply.
4	LON	LNA Inverting Output.
5	LOP	LNA Noninverting Output.
6	COML	LNA Ground.
7	VIP	VGA Noninverting Input.
8	VIN	VGA Inverting Input.
9	MODE	Gain Slope Logic Input.
10	GAIN	Gain Control Voltage.
11	VCM	Common-Mode Voltage.
12	RCLMP	Output Clamping Level.
13	HILO	Gain Range Select (High or Low).
14	VPOS	VGA 5 V Supply.
15	VOH	Noninverting VGA Output.
16	VOL	Inverting VGA Output.
17, 20	COMM	VGA Grounds.
18	ENBV	VGA Enable.
19	ENBL	LNA Enable.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, $V_S = 5$ V, $R_L = 500$ Ω , $R_S = R_{IN} = 50$ Ω , $R_{IZ} = 280$ Ω , $C_{SH} = 22$ pF, f = 10 MHz, $R_{CLMP} = \infty$, $C_L = 1$ pF, VCM pin floating, -4.5 dB gain (HILO = low), and differential output voltage, unless otherwise noted.

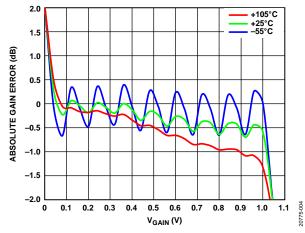


Figure 4. Absolute Gain Error vs. V_{GAIN} at Three Temperatures

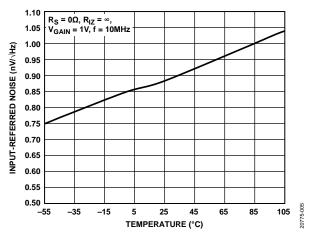


Figure 5. Input-Referred Noise vs. Temperature

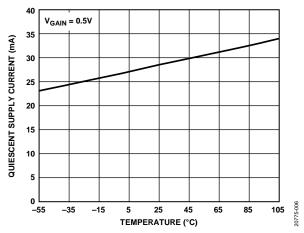
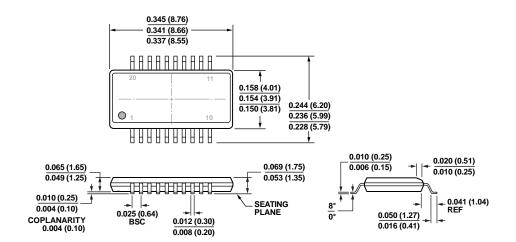



Figure 6. Quiescent Supply Current vs. Temperature

Enhanced Product AD8331-EP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AD

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 7. 20-Lead Shrink Small Outline Package [QSOP] (RQ-20) Dimensions shown in Inches and (millimeters)

ORDERING GUIDE

Model ¹ Temperature Range		Package Description	Package Option	
AD8331TRQZ-EP	−55°C to +105°C	20-Lead Shrink Small Outline Package [QSOP]	RQ-20	
AD8331TRQZ-EP-R7	−55°C to +105°C	20-Lead Shrink Small Outline Package [QSOP]	RQ-20	

¹ Z = RoHS Compliant Part.

www.analog.com