

4-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 16-Lead TSSOP

Known Good Die AD7924-KGD

FEATURES

Fast throughput rate: 1 MSPS Specified for AV_{DD} of 2.7 V to 5.25 V

Low power

6 mW maximum at 1 MSPS with 3 V supplies 13.5 mW maximum at 1 MSPS with 5 V supplies

4 single-ended inputs with sequencer

Wide input bandwidth: 70 dB SNR at 50 kHz input frequency

Flexible power/serial clock speed management

No pipeline delays

High speed serial interface: SPI/QSPI™/MICROWIRE™/DSP compatible

Shutdown mode: 0.5 µA maximum

16-lead TSSOP package

Qualified for automotive applications

Known good die (KGD): these die are fully guaranteed to data sheet specifications.

GENERAL DESCRIPTION

The AD7924-KGD is a 12-bit, high speed, low power, 4-channel successive approximation ADCs. The parts operate from a single 2.7 V to 5.25 V power supply and feature throughput rates up to 1 MSPS. The part contains a low noise, wide bandwidth track-and-hold amplifier that can handle input frequencies in excess of 8 MHz.

The conversion process and data acquisition are controlled using \overline{CS} and the serial clock signal, allowing the device to easily interface with microprocessors or DSPs. The input signal is sampled on the falling edge of \overline{CS} and conversion is initiated at this point. There are no pipeline delays associated with the part.

The AD7924-KGD uses advanced design techniques to achieve very low power dissipation at maximum throughput rates. At maximum throughput rates, the AD7924-KGD consumes 2 mA maximum with 3 V supplies; with 5 V supplies, the current consumption is 2.7 mA maximum.

Through the configuration of the control register, the analog input range for the part can be selected as 0 V to REF_{IN} or 0 V to $2\times$ REF_{IN}, with either straight binary or twos complement output coding. The AD7924-KGD features four single-ended analog inputs with a channel sequencer to allow a preprogrammed selection of channels to be converted sequentially.

The conversion time for the AD7924-KGD is determined by the SCLK frequency, which is also used as the master clock to control the conversion

Additional application and technical information can be found in the AD7924 data sheet.

Rev. A

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

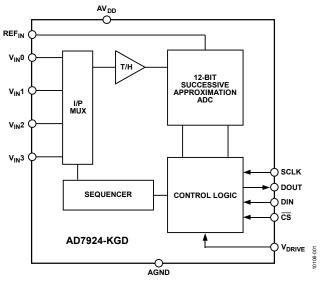


Figure 1.

PRODUCT HIGHLIGHTS

- High Throughput with Low Power Consumption.
 The AD7924-KGD offers throughput rates up to 1 MSPS.
 At the maximum throughput rate with 3 V supplies, the AD7924-KGD dissipates only 6 mW of power maximum.
- Four Single-Ended Inputs with Channel Sequencer.
 A consecutive sequence of channels can be selected, through which the ADC will cycle and convert on.
- 3. Single-Supply Operation with V_{DRIVE} Function. The AD7924-KGD operates from a single 2.7 V to 5.25 V supply. The V_{DRIVE} function allows the serial interface to connect directly to 3 V or 5 V processor systems, independent of V_{DD} .
- 4. Flexible Power/Serial Clock Speed Management. The conversion rate is determined by the serial clock, allowing the conversion time to be reduced by increasing the serial clock speed. The part also features two shutdown modes to maximize power efficiency at lower throughput rates. Current consumption is 0.5 μ A maximum when in full shutdown.
- 5. No Pipeline Delay.

 The part features a standard successive approximation ADC with accurate control of the sampling instant via the CS input and once-off conversion control.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011–2014 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Geatures	. 1
General Description	1
Functional Block Diagram	1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
Timing Specifications	. 5
REVISION HISTORY	
1/14—Rev. 0 to Rev. A	
Change to Bond Pad Composition Value, Table 5	8

10/11—Revision 0: Initial Version

Known Good Die AD7924-KGD

SPECIFICATIONS

 $AV_{DD} = V_{DRIVE} = 2.7 \text{ V to } 5.25 \text{ V}, REF_{IN} = 2.5 \text{ V}, f_{SCLK} = 20 \text{ MHz}, T_A = T_{MIN} \text{ to } T_{MAX}, unless \text{ otherwise noted}. Temperature range is } -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE					$f_{IN} = 50 \text{ kHz sine wave, } f_{SCLK} = 20 \text{ MHz}$
Signal-to-(Noise + Distortion), SINAD	70			dB @ 5 V	
	69			dB	@ 3 V, typically 69.5 dB
Signal-to-Noise Ratio, SNR	70			dB	
Total Harmonic Distortion, THD			-77	dB	@ 5 V, typically –84 dB
			-73	dB	@ 3 V, typically –77 dB
Peak Harmonic or Spurious Noise, SFDR			-78	dB	@ 5 V, typically –86 dB
Intermodulation Distortion, IMD					fa = 40.1 kHz, fb = 41.5 kHz
Second-Order Terms		-90		dB	
Third-Order Terms		-90		dB	
Aperture Delay		10		ns	
Aperture Jitter		50		ps	
Channel-to-Channel Isolation		-85		dB	$f_{IN} = 400 \text{ kHz}$
Full Power Bandwidth		8.2		MHz	@ 3 dB
		1.6		MHz	@ 0.1 dB
DC ACCURACY					
Resolution	12			Bits	
Integral Nonlinearity, INL			±1	LSB	
Differential Nonlinearity, DNL			-0.9/+1.5	LSB	Guaranteed no missed codes to 12 bits
0 V to REF _{IN} Input Range					Straight binary output coding
Offset Error			±8	LSB	Typically ±0.5 LSB
Offset Error Match			±0.5	LSB	, ,
Gain Error			±1.5	LSB	
Gain Error Match			±0.5	LSB	
0 V to 2 × REF _{IN} Input Range					-REF _{IN} to +REF _{IN} biased about REF _{IN} with twos complement output coding
Positive Gain Error			±1.5	LSB	twos complement output county
Positive Gain Error Match			±0.5	LSB	
Zero Code Error			±8	LSB	Typically ±0.8 LSB
Zero Code Error Match			±0.5	LSB	Typically ±0.8 L3B
Negative Gain Error			±0.5 ±1	LSB	
Negative Gain Error Match			±0.5	LSB	
ANALOG INPUT			±0.5	LJD	
Input Voltage Range	0		REF _{IN}	V	RANGE bit set to 1
input voitage hange	0		2 × REF _{IN}	V	RANGE bit set to 1 RANGE bit set to 0, $AV_{DD}/V_{DRIVE} = 4.75 \text{ V}$ to 5.25 V
DC Leakage Current	0		±1	μA	NAME DIESELLO O, AVDD/ VDRIVE — 4.73 V LO 3.23 V
Input Capacitance		20	±1	pF	
REFERENCE INPUT		20		рг	
		2.5		V	110/ consisted managements
REF _{IN} Input Voltage		2.5	1	V	±1% specified performance
DC Leakage Current		26	±1	μA	f _ 1 MCDC
REF _{IN} Input Impedance		36		kΩ	f _{SAMPLE} = 1 MSPS
LOGIC INPUTS	07.34			.,	
Input High Voltage, V _{INH}	$0.7 \times V_{DRIVE}$		0.2	V	
Input Low Voltage, V _{INL}			$0.3 \times V_{DRIVE}$	٧	T : II 10 A V . CV . V
Input Current, I _{IN}			±1	μΑ	Typically 10 nA, $V_{IN} = 0 \text{ V or } V_{DRIVE}$
Input Capacitance, C _{IN} ¹			10	рF	

Parameter	Min	Тур Мах	Unit	Test Conditions/Comments	
LOGIC OUTPUTS					
Output High Voltage, V _{OH}	$V_{\text{DRIVE}} - 0.2$		V	$I_{SOURCE} = 200 \mu\text{A}, AV_{DD} = 2.7 \text{V} \text{to} 5.25 \text{V}$	
Output Low Voltage, Vol		0.4	V	I _{SINK} = 200 μA	
Floating-State Leakage Current		±1	μΑ		
Floating-State Output Capacitance ¹		10	рF		
Output Coding	Straight	(natural) binary		CODING bit set to 1	
	Twos	complement		CODING bit set to 0	
CONVERSION RATE					
Conversion Time		800	ns	16 SCLK cycles with SCLK at 20 MHz	
Track-and-Hold Acquisition Time		300	ns	Sine wave input	
		300	ns	Full-scale step input	
Throughput Rate		1	MSPS		
POWER REQUIREMENTS					
V_{DD}	2.7	5.25	V		
V _{DRIVE}	2.7	2.7 5.25			
I_{DD}				Digital inputs = 0 V or V_{DRIVE}	
Normal Mode (Static)		600	μΑ	$AV_{DD} = 2.7 \text{ V to } 5.25 \text{ V, SCLK on or off}$	
Normal Mode (Operational)		2.7	mA	$AV_{DD} = 4.75 \text{ V to } 5.25 \text{ V, } f_{SCLK} = 20 \text{ MHz}$	
		2	mA	$AV_{DD} = 2.7 \text{ V to } 3.6 \text{ V, } f_{SCLK} = 20 \text{ MHz}$	
Auto Shutdown Mode		960	μΑ	f _{SAMPLE} = 250 kSPS	
		0.5	μΑ	Static	
Full Shutdown Mode		0.5	μΑ	SCLK on or off (20 nA typ)	
Power Dissipation					
Normal Mode (Operational)		13.5	mW	$AV_{DD} = 5 \text{ V}, f_{SCLK} = 20 \text{ MHz}$	
		6	mW	$AV_{DD} = 3 V$, $f_{SCLK} = 20 MHz$	
Auto Shutdown Mode (Static)		2.5	μW	$AV_{DD} = 5 V$	
		1.5	μW	$AV_{DD} = 3 V$	
Full Shutdown Mode		2.5	μW	$AV_{DD} = 5 V$	
		1.5	μW	$AV_{DD} = 3 V$	

¹ Sample tested at 25°C to ensure compliance.

TIMING SPECIFICATIONS

 $AV_{DD} = 2.7 \text{ V}$ to 5.25 V, $V_{DRIVE} \le AV_{DD}$, $REF_{IN} = 2.5 \text{ V}$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

Table 2.

		Limit at T _{MIN} , T _{MA}	х	
Parameter ¹	$AV_{DD} = 3 V$	$AV_{DD} = 5 V$	Unit	Description
f _{SCLK} ²	10	10	kHz min	
	20	20	MHz max	
t CONVERT	$16 \times t_{SCLK}$	$16 \times t_{SCLK}$		
t QUIET	50	50	ns min	Minimum quiet time required between the CS rising edge and the start of the next conversion
t ₂	10	10	ns min	CS to SCLK setup time
t_3 ³	35	30	ns max	Delay from CS until DOUT three-state disabled
t_4 ³	40	40	ns max	Data access time after SCLK falling edge
t ₅	$0.4 \times t_{SCLK}$	$0.4 \times t_{\text{SCLK}}$	ns min	SCLK low pulse width
t ₆	$0.4 \times t_{SCLK}$	$0.4 \times t_{SCLK}$	ns min	SCLK high pulse width
t ₇	10	10	ns min	SCLK to DOUT valid hold time
t ₈ ⁴	15/45	15/35	ns min/ns max	SCLK falling edge to DOUT high impedance
t ₉	10	10	ns min	DIN setup time prior to SCLK falling edge
t ₁₀	5	5	ns min	DIN hold time after SCLK falling edge
t ₁₁	20	20	ns min	16th SCLK falling edge to CS high
t ₁₂	1	1	μs max	Power-up time from full shutdown/auto shutdown modes

¹ Sample tested at 25°C to ensure compliance. All input signals are specified with $t_R = t_F = 5$ ns (10% to 90% of AV_{DD}) and timed from a voltage level of 1.6 V (see Figure 2). The 3 V operating range spans from 2.7 V to 3.6 V. The 5 V operating range spans from 4.75 V to 5.25 V.

⁴ ts is derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, ts, quoted in the timing characteristics is the true bus relinquish time of the part and is independent of the bus loading.

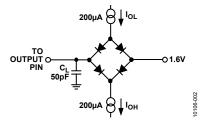


Figure 2. Load Circuit for Digital Output Timing Specifications

² Mark/space ratio for the SCLK input is 40/60 to 60/40.

³ Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.4 V or 0.7 × V_{DRIVE}.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
AV _{DD} to AGND	−0.3 V to +7 V
V _{DRIVE} to AGND	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Analog Input Voltage to AGND	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Digital Input Voltage to AGND	−0.3 V to +7 V
Digital Output Voltage to AGND	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
REF _{IN} to AGND	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Input Current to Any Pin Except Supplies ¹	±10 mA
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Lead Temperature, Soldering	
Vapor Phase (60 secs)	215°C
Infrared (15 secs)	220°C
ESD	1.5 kV

¹Transient currents of up to 100 mA do not cause SCR latch-up.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Known Good Die AD7924-KGD

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

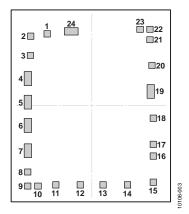


Figure 3. Pad Configuration

Table 4. Pad Function Descriptions

Pad No.	X-Axis (µm)	Y-Axis (μm)	Mnemonic	Pad Type	Description	
1	-580.3	+965.95	SCLK	Single	Serial Clock	
2	-815.4	+932.75	DIN	Single	Data In, Logic Input.	
3	-815.4	+677.6	CS	Single	Chip Select.	
4A	-850.85	+416	AGND	Double	Analog Ground.	
4B	-850.85	+316	AGND	Double	Analog Ground.	
5	-854.15	+50.35	AVDD	Double	Analog Power Supply Input.	
6	-854.4	-258.7	AVDD	Double	Analog Power Supply Input.	
7A	-850.45	-546	VREF	Double	Reference Input.	
7B	-850.45	-646	VREF	Double	Reference Input.	
8	-854.2	-877.9	NC	Single	No Connect. Do not connect to this pin.	
9	-854.2	-1070.1	AGND	Single	Analog Ground.	
10	-712.45	-1070.1	AGND	Single	Analog Ground.	
11	-458.95	-1054.1	NC	Single	No Connect. Do not connect to this pin.	
12	-108.95	-1054.1	NC	Single	No Connect. Do not connect to this pin.	
13	+200.85	-1054.1	NC	Single	No Connect. Do not connect to this pin.	
14	+550.85	-1054.1	NC	Single	No Connect. Do not connect to this pin.	
15	+916.2	-1021.15	VIN3	Single	Analog Input 0.	
16	+916.2	−671.15	VIN2	Single	Analog Input 1.	
17	+916.2	-510.75	VIN1	Single	Analog Input 2.	
18	+916.2	-160.75	VIN0	Single	Analog Input 3.	
19A	880.85	144	AGND	Double	Analog Ground.	
19B	880.85	244	AGND	Double	Analog Ground.	
20	896.05	537.15	DOUT	Single	Data Output.	
21	865.35	885.8	VDRIVE	Single	Logic Power Supply Input.	
22	865.35	1025.8	VDRIVE	Single	Logic Power Supply Input.	
23	725.35	1025.8	NC	Single	No Connect. Do not connect to this pin.	
24A	-191	+997.4	AGND	Double	le Analog Ground.	
24B	-291	+997.4	AGND	Double	Analog Ground.	

OUTLINE DIMENSIONS

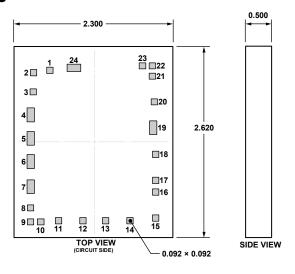


Figure 4. 24-Pad Bare Die [CHIP] (C-24-1) Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 5. Die Specifications

Parameter	Value	Unit
Chip Size	2180 (x) × 2450 (y)	μm
Scribe Line Width	$120 (x) \times 170 (y)$	μm
Die Size	2300 (x) × 2620 (y)	μm
Thickness	500	μm
Backside	Silicon	Not applicable
Passivation	Nitride	Not applicable
Bond Pads (Minimum)	92×92	μm
Bond Pad Composition	99.5% Al, 0.5% Cu	%
ESD	1.5	kV

Table 6. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	No special recommendations
Bonding Method	Gold ball or aluminum wedge
Bonding Sequence	9 and 10

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD7924-KGD-DF	-40°C to +85°C	24-Pad Bare Die [CHIP]	C-24-1

©2011–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

D10106-0-11/14(A)

www.analog.com