

DEMO MANUAL DC1797A

LTC3536 1A, Low Noise, Wide $V_{\rm IN}$ Buck-Boost DC/DC Converter

DESCRIPTION

Demonstration circuit 1797A is a combined step-up and step-down DC/DC converter using the LTC®3536 monolithic synchronous buck-boost regulator. The DC1797A has wide input voltage range of 1.8V to 5.5V, and is capable of delivering up to 1A of output current. The output voltage of the DC1797A can be set as low as 1.8V and can go as high as 5.5V. The DC1797A supports two operational modes: fixed-frequency pulse-width modulation (PWM) and Burst Mode® operation. Fixed-frequency mode of operation maximizes the output current, reduces output voltage ripple, and yields a low noise switching spectrum. Burst Mode operation employs a variable frequency switching algorithm that minimizes the no-load input quiescent current and improves efficiency at light loads.

The DC1797A consumes less than $28\mu\text{A}$ of quiescent current during Burst Mode operation, and during shutdown, it consumes less than $1\mu\text{A}$. The DC1797A has a standard operating frequency of 1MHz, but can be adjusted to frequencies as high as 2MHz. If Pin 1 (RT) is tied to V_{IN} , the default switching frequency is 1.2MHz. Because of the high switching frequency of the DC1797A, small, low profile surface mount components are used in the circuit. These features, plus the LTC3536 availability in a small 10-lead DFN package, make the DC1797A a perfect match for battery-powered, hand-held applications.

Design files for this circuit board are available at http://www.linear.com/demo

Δ, LT, LTC, LTM, μModule, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

PARAMETER	CONDITIONS	VALUE
Minimum Input Voltage		1.8V
Maximum Input Voltage		5.5V
Output Voltage V _{OUT} Regulation	V _{IN} = 1.8V to 5.5V	3.3V ±2%
Maximum Continuous Output Current	Fixed Frequency Mode	1A
Preset Operating Frequency	R6 = 100kΩ	1MHz
External Clock Sync. Frequency Range		300kHz to 2MHz
Efficiency	$V_{IN} = 5V$, $V_{OUT} = 3.3V$, $I_{OUT} = 0.2A$	95%
Typical Output Ripple V _{OUT}	V _{IN} = 5V, I _{OUT} = 1A (20MHz Bandwidth)	< 15mV _{P-P}
Burst Mode Operation	$V_{IN} = 5V$, $V_{OUT} = 3.3V$ $V_{IN} = 2.5V$, $V_{OUT} = 3.3V$	< 0.15A < 0.1A

QUICK START PROCEDURE

Demonstration circuit 1797A is easy to set up to evaluate the performance of the LTC3536. For proper measurement equipment configuration, set up the circuit according to the diagram in Figure 1. Before proceeding to test, insert shunts into JP1 fixed frequency and JP2 off positions, which connects the RUN pin to ground (GND), and thus, shutdown the circuit.

Note: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OUT} and GND terminals. See Figure 2 for proper scope probe technique.

1. With the DC1797 set up according to the proper measurement and equipment in Figure 1, apply 5V at V_{IN} . Measure V_{OUT} ; it should read 0V. If desired, one can measure the shutdown supply current at this point. The supply current will be approximately $3\mu A$, or less, in shutdown.

- 2. Turn on the circuit by inserting the shunt in header JP2 into the ON position. The output voltage should be regulating. Measure V_{OUT}—it should measure 3.3V±% (Do not apply more than the rated maximum voltage of 5.5V to the board or the part may be damaged).
- 3. Vary the converter load, which should not exceed 1A at V_{IN} 5.0V.
- 4. Vary the input voltage from 1.8V to 5.5V, the available output current depends on the input voltage, see the LTC3536 data sheet for details.
- 5. Set output current to zero and move jumper JP2 into Burst Mode position and measure V_{OUT} it should register 3.3V ±1%.
- 6. Vary the input voltage from 1.8V to 5.5V, the available output current depends on the input voltage. Load in Burst Mode operation should no exceed 0.15A at $V_{\rm IN}$ 5.0V and 0.1A at 2.5V, see the LTC3536 data sheet for details.

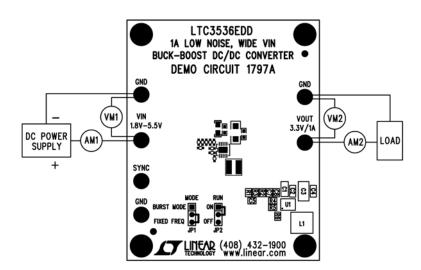


Figure 1. Proper Measurement Equipment Setup

QUICK START PROCEDURE

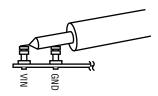


Figure 2. Measuring Input or Output Ripple

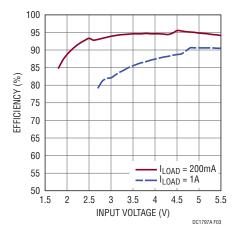


Figure 3. Efficiency vs Input Voltage

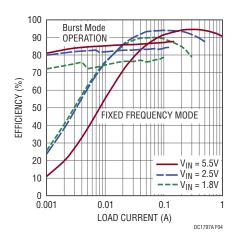
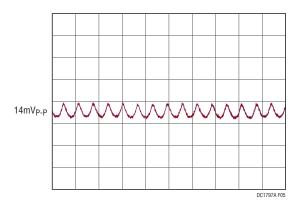
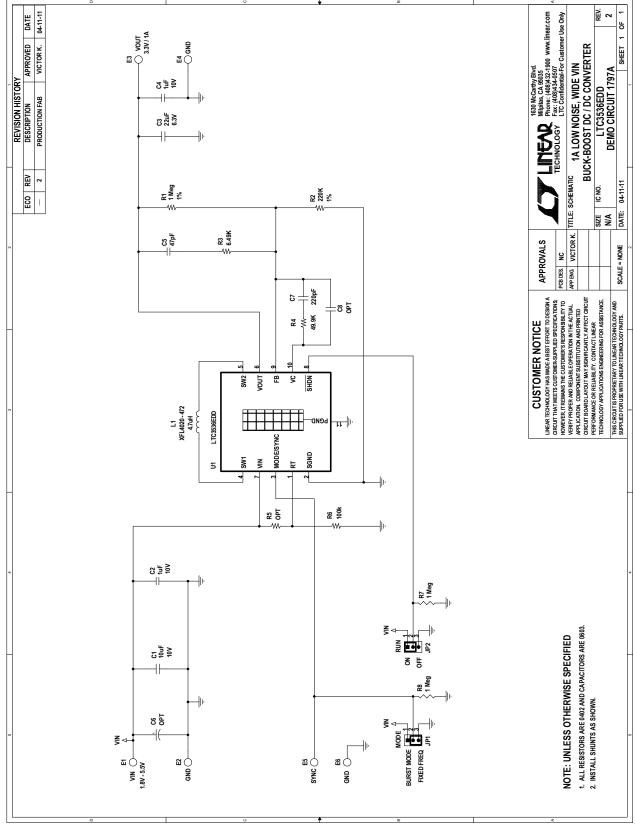


Figure 4. Efficiency vs Input Voltage for Fixed Frequency and Burst Mode Operation




Figure 5. Output Noise, $V_{IN} = 4.5V$, $I_{OUT} = 1A$

DEMO MANUAL DC1797A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER, PART NUMBER
Required C	ircuit Com	ponents	,	
1	1	C1	Capacitor Ceramic 10µF 10V X5R 10% 0805	Murata, GRM21BR61A106KE19L
2	2	C2, C4	Capacitor Ceramic 1.0µF 10V X7R 20% 0603	AVX, 06036C105MAT2A
3	1	C3	Capacitor Ceramic 22µF 6.3V X5R 10% 1206	AVX, 12066D226KAT2A
4	1	C5	Capacitor Ceramic 47PF 50V COG 5% 0402	TDK, C1005C0G1H470J
5	1	C7	Capacitor Ceramic 220PF 50V COG 5% 0402	Murata, GRM1555C1H221JA01D
6	1	L1	Inductor, 4.7µH	Coilcraft XFL4020-472MEC
7	3	R1, R7, R8	Resistor 1.00MΩ 1/16W 1% 0402 SMD	Vishay, CRCW04021M00FK
8	1	R2	Resistor 220kΩ 1/16W 1% 0402 SMD	Vishay, CRCW0402220KFKED
9	1	R3	Resistor 6.49kΩ 1/16W 1% 0402 SMD	Vishay, CRCW04026K49FKED
10	1	R4	Resistor 49.9kΩ 1/16W 1% 0402 SMD	Vishay, CRCW040249K9FKED
11	1	R6	Resistor 100kΩ 1/16W 1% 0402 SMD	Vishay, CRCW0402100KFKED
12	1	U1	Buck-Boost Converter	Linear Technology, LTC3536EDD
Additional I	Demo Boa	rd Circuit Components		
1	0	C6	Capacitor, POSCAP 47µF 10V	Sanyo, 10TPB47MC, Optional
2	0	C8	Capacitor C0G 0402	Optional
3	0	R5	Resistor, 0402	Optional
Hardware				
1	4	MH1-MH4	Stand-Off, Nylon (Snap On), 0.375" Tall	Keystone, 8832
2	6	E1, E2, E3, E4, E5, E6	Turret, 0.09 Diameter	Mill-Max, 2501-2-00-80-00-00-07-0
3	2	JP2, JP1	Headers, 3 Pins, 2mm CTRs	Samtec, TMM-103-02-L-S
4	2	XJP1, XJP2	Shunt, 2mm CTRs	Samtec, 2SN-BK-G
5	1	FAB, Printed Circuit Board	Demo Circuit 1797A-2	

SCHEMATIC DIAGRAM

DEMO MANUAL DC1797A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

