
BOURNS®

- Designed for Complementary Use with the BD246 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD245		55	
Collector-emitter voltage ($R_{RF} = 100 \Omega$)	BD245A	V	70	V
Collector-entitler voltage (NBE = 100 sz)	BD245B	VCER	90	
	BD245C		115	
	BD245		45	
Collector-emitter voltage (I _C = 30 mA)	BD245A	V _{CEO}	60	٧
	BD245B		80	
	BD245C		100	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		I _C	10	Α
Peak collector current (see Note 1)		I _{CM}	15	Α
Continuous base current	Ι _Β	3	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	80	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	3	W	
Unclamped inductive load energy (see Note 4)		½LI _C ²	62.5	mJ
Operating junction temperature range	T _j	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	TL	250	ç	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C $\,$ free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

PRODUCT INFORMATION

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	IS	MIN	MIN TYP MAX	UNIT		
.,	Collector-emitter breakdown voltage			BD245 BD245A	45 60			.,	
V _{(BR)CEO}		breakdown voltage	$I_C = 30 \text{ mA}$ $I_B = 0$ (see Note 5)	I _B = 0	BD245B	80			V
		,	BD245C		100				
		V _{CE} = 55 V	$V_{BE} = 0$	BD245			0.4		
I _{CES}	Collector-emitter	$V_{CE} = 70 V$	$V_{BE} = 0$	BD245A			0.4	mA	
CES	cut-off current	$V_{CE} = 90 V$	$V_{BE} = 0$	BD245B			0.4		
		V _{CE} = 115 V	$V_{BE} = 0$	BD245C			0.4		
1	Collector cut-off	V _{CE} = 30 V	I _B = 0	BD245/245A			0.7	mA	
I _{CEO}	current	V _{CE} = 60 V	$I_B = 0$	BD245B/245C			0.7		
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA	
	Forward current	V _{CE} = 4 V	I _C = 1 A		40				
h _{FE}	transfer ratio	$V_{00} = 4 V$	V _{CE} = 4 V	$I_C = 3 A$	(see Notes 5 and 6)	20			
		V _{CE} = 4 V	$I_{\rm C} = 10 {\rm A}$		4				
V-=- "	Collector-emitter	I _B = 0.3 A	I _C = 3 A	(see Notes 5 and 6)			1	V	
V _{CE(sat)}	saturation voltage	I _B = 2.5 A	$I_{C} = 10 \text{ A}$				4	•	
V_{BE}	Base-emitter	V _{CE} = 4 V	I _C = 3 A	(see Notes 5 and 6)		1.6	V		
*BE	voltage	$V_{CE} = 4 V$	$I_{C} = 10 \text{ A}$	(see Notes 5 and 6)			3	•	
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20				
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3				

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \, \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.56	°C/W
R _{0JA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_L = 20 \Omega$	$t_p = 20 \ \mu s, \ dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs COLLECTOR CURRENT TCS633AG TCS633AG Tc = 25° C t_p = $300 \, \mu s$, duty cycle < 2% 100 10 10 1.0 10

COLLECTOR-EMITTER SATURATION VOLTAGE

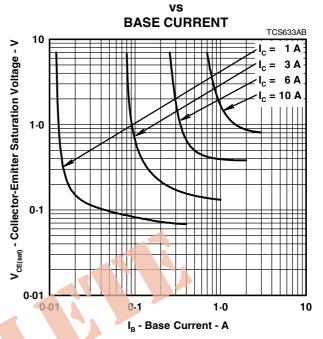


Figure 1.

Figure 2.

BASE-EMITTER VOLTAGE vs

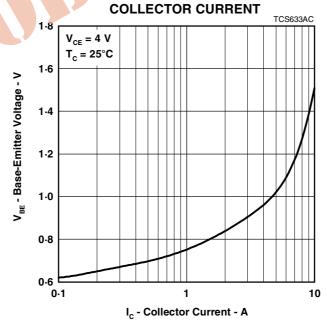
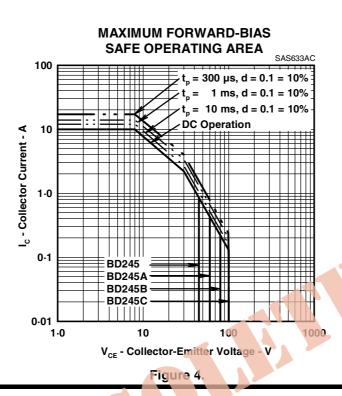
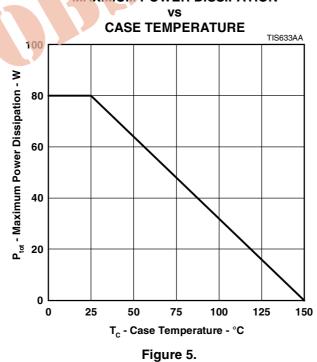



Figure 3.


PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

PRODUCT INFORMATION