
## BD546, BD546A, BD546B, BD546C PNP SILICON POWER TRANSISTORS

# BOURNS®

- Designed for Complementary Use with the BD545 Series
- 85 W at 25°C Case Temperature
- 15 A Continuous Collector Current
- Customer-Specified Selections Available



Pin 2 is in electrical contact with the mounting base.

MDTRAAA

#### absolute maximum ratings at 25°C case temperature (unless otherwise noted)

| RATING                                                                          | SYMBOL           | VALUE            | UNIT |   |  |
|---------------------------------------------------------------------------------|------------------|------------------|------|---|--|
|                                                                                 | BD546            |                  | -40  |   |  |
| Callester base valtage (I)                                                      | BD546A           | M                | -60  | v |  |
| Collector-base voltage ( $I_E = 0$ )                                            | BD546B           | V <sub>СВО</sub> | -80  | v |  |
|                                                                                 | BD546C           |                  | -100 |   |  |
|                                                                                 | BD546            |                  | -40  |   |  |
| Collector-emitter voltage ( $I_B = 0$ ) (see Note 1)                            | BD546A           | V                | -60  | v |  |
|                                                                                 | BD546B           | CEO              | -80  | v |  |
|                                                                                 | BD546C           |                  | -100 | l |  |
| Emitter-base voltage                                                            |                  | V <sub>EBO</sub> | -5   | V |  |
| Continuous collector current                                                    |                  | Ι <sub>C</sub>   | -15  | Α |  |
| Continuous device dissipation at (or below) 25°C case temperature (see Note 2   | P <sub>tot</sub> | 85               | W    |   |  |
| Continuous device dissipation at (or below) 25°C free air temperature (see Note | P <sub>tot</sub> | 3.5              | W    |   |  |
| Operating free air temperature range                                            | T <sub>A</sub>   | -65 to +150      | °C   |   |  |
| Operating junction temperature range                                            | Тj               | -65 to +150      | °C   |   |  |
| Storage temperature range                                                       | T <sub>stg</sub> | -65 to +150      | °C   |   |  |
| Lead temperature 3.2 mm from case for 10 seconds                                | ΤL               | 260              | °C   |   |  |

NOTES: 1. These values apply when the base-emitter diode is open circuited.

2. Derate linearly to 150°C case temperature at the rate of 0.68 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C.

#### PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

## BD546, BD546A, BD546B, BD546C PNP SILICON POWER TRANSISTORS



#### electrical characteristics at 25°C case temperature

| PARAMETER            |                                                |                                         | TEST CONDITIONS         |                     |      | ТҮР | MAX  | UNIT |
|----------------------|------------------------------------------------|-----------------------------------------|-------------------------|---------------------|------|-----|------|------|
| V <sub>(BR)CEO</sub> | Collector-emitter<br>breakdown voltage         |                                         |                         | BD546               | -40  |     |      |      |
|                      |                                                | L _ 20 mA                               | 1 – 0                   | BD546A              | -60  |     |      | v    |
|                      |                                                | I <sub>C</sub> = -30 mA<br>(see Note 4) | $I_{B} = 0$             | BD546B              | -80  |     |      | v    |
|                      |                                                | (see Note 4)                            |                         | BD546C              | -100 |     |      |      |
|                      |                                                | $V_{CE} = -40 V$                        | $V_{BE} = 0$            | BD546               |      |     | -0.4 |      |
|                      | Collector-emitter                              | V <sub>CE</sub> = -60 V                 | $V_{BE} = 0$            | BD546A              |      |     | -0.4 | mA   |
| ICES                 | cut-off current                                | V <sub>CE</sub> = -80 V                 | $V_{BE} = 0$            | BD546B              |      |     | -0.4 | ma   |
|                      |                                                | V <sub>CE</sub> = -100 V                | $V_{BE} = 0$            | BD546C              |      |     | -0.4 |      |
| I <sub>CEO</sub>     | Collector cut-off                              | V <sub>CE</sub> = -30 V                 | I <sub>B</sub> = 0      | BD546/546A          |      |     | -0.7 | mA   |
|                      | current                                        | V <sub>CE</sub> = -60 V                 | I <sub>B</sub> = 0      | BD546B/546C         |      |     | -0.7 | ШA   |
| I <sub>EBO</sub>     | Emitter cut-off                                | V <sub>EB</sub> = -5 V                  | I <sub>C</sub> = 0      |                     |      |     | -1   | mA   |
| EBO                  | current                                        |                                         | Ū.                      |                     |      |     |      |      |
|                      | Forward current                                | $V_{CE} = -4 V$                         | I <sub>C</sub> = -1 A   |                     | 60   |     |      |      |
| h <sub>FE</sub>      | transfer ratio                                 | $V_{CE} = -4 V$                         | I <sub>C</sub> = -5 A   | (see Notes 4 and 5) | 25   |     |      |      |
|                      |                                                | $V_{CE} = -4 V$                         | -                       |                     | 10   |     |      |      |
| V <sub>CE(sat)</sub> | Collector-emitter                              | I <sub>B</sub> = -625 mA                | I <sub>C</sub> = -5 A   | (see Notes 4 and 5) |      |     | -0.8 | v    |
| CE(sat)              | saturation voltage                             | I <sub>B</sub> = -2 A                   | I <sub>C</sub> = -10 A  |                     |      |     | -1   | ļ    |
| $V_{BE}$             | Base-emitter<br>voltage                        | $V_{CE} = -4 V$                         | I <sub>C</sub> = -10 A  | (see Notes 4 and 5) |      |     | -1.8 | V    |
| h <sub>fe</sub>      | Small signal forward<br>current transfer ratio | V <sub>CE</sub> = -10 V                 | I <sub>C</sub> = -0.5 A | f = 1  k   z        | 20   |     |      |      |
| h <sub>fe</sub>      | Small signal forward<br>current transfer ratio | V <sub>CE</sub> = -10 V                 | I <sub>C</sub> = -0.5 A | f = 1 MHz           | 3    |     |      |      |

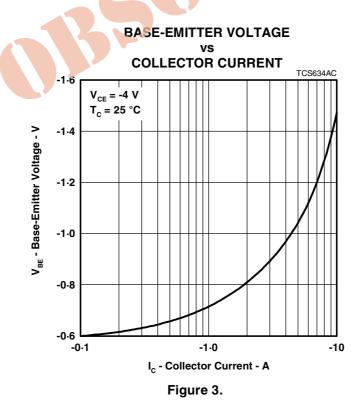
NOTES: 4. These parameters must be measured using pulse techniques,  $t_p = 300 \text{ } \mu s$ , duty cycle  $\leq 2\%$ .

5. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

#### thermal characteristics

| PARAMETER                                                | MIN | ТҮР | MAX  | UNIT |
|----------------------------------------------------------|-----|-----|------|------|
| R <sub>0JC</sub> Junction to case thermal resistance     |     |     | 1.47 | °C/W |
| R <sub>0JA</sub> Junction to free air thermal resistance |     |     | 35.7 | °C/W |


#### resistive-load-switching characteristics at 25°C case temperature

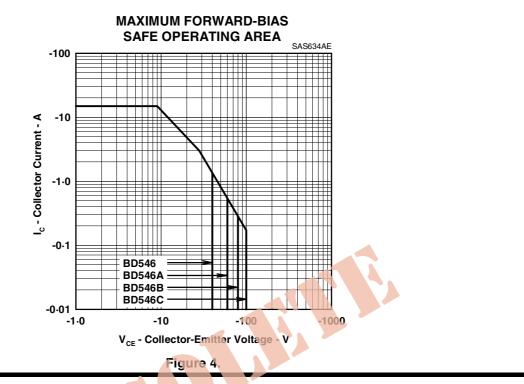

|                  | PARAMETER     | TEST CONDITIONS <sup>†</sup> |                             |                             | MIN | ТҮР | MAX | UNIT |
|------------------|---------------|------------------------------|-----------------------------|-----------------------------|-----|-----|-----|------|
| t <sub>on</sub>  | Turn-on time  | I <sub>C</sub> = -6 A        | I <sub>B(on)</sub> = -0.6 A | $I_{B(off)} = 0.6 A$        |     | 0.4 |     | μs   |
| t <sub>off</sub> | Turn-off time | $V_{BE(off)} = 4 V$          | $R_L = 5 \Omega$            | $t_p$ = 20 µs, dc $\leq$ 2% |     | 0.7 |     | μs   |

<sup>†</sup> Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

## BD546, BD546A, BD546B, BD546C PNP SILICON POWER TRANSISTORS

### **TYPICAL CHARACTERISTICS**






#### PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

# BOURNS®

### MAXIMUM SAFE OPERATING REGIONS



THERMAL INFORMATION

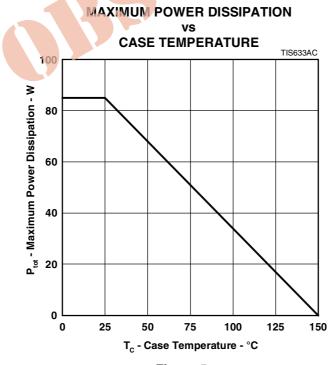



Figure 5.

PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.