CYDXXS36V18 CYDXXS18V18

Features

－True dual port memory enables simultaneous access the shared array from each port
■ Synchronous pipelined operation with single data rate（SDR） operation on each port
\square SDR interface at 200 MHz
－Up to 28．8 Gbps bandwidth（ $200 \mathrm{MHz} \times 72$－bit $\times 2$ ports）
■ Selectable pipelined or flow－through mode
－ 1.5 V or 1.8 V core power supply
－Commercial and Industrial temperature
－IEEE 1149．1 JTAG boundary scan
■ Available in 484－ball PBGA（ $\times 72$ ）and 256－ball FBGA（ $\times 36$ and $\times 18$ ）packages
－FullFlex72 family
－36－Mbit： $512 \mathrm{~K} \times 72$（CYD36S72V18）
口 18－Mbit： $256 \mathrm{~K} \times 72$（CYD18S72V18）
口 9－Mbit： $128 \mathrm{~K} \times 72$（CYD09S72V18）
－FullFlex36 family
口 36－Mbit： $1 \mathrm{M} \times 36$（CYD36S36V18）
－18－Mbit： $512 \mathrm{~K} \times 36$（CYD18S36V18）
a 9－Mbit： $256 \mathrm{~K} \times 36$（CYD09S36V18）
口 2－Mbit： $64 \mathrm{~K} \times 36$（CYD02S36V18）
－FullFlex18 family
－36－Mbit： $2 \mathrm{M} \times 18$（CYD36S18V18）
－18－Mbit： $1 \mathrm{M} \times 18$（CYD18S18V18）
a 9－Mbit： $512 \mathrm{~K} \times 18$（CYD09S18V18）
■ Built－in deterministic access control to manage address collisions
\square Deterministic flag output upon collision detection
a Collision detection on back－to－back clock cycles
－First busy address readback
－Advanced features for improved high－speed data transfer and flexibility
\square Variable impedance matching（VIM）
－Echo clocks
a Selectable LVTTL（ 3.3 V ），Extended $\mathrm{HSTL}^{[1]}(1.4 \mathrm{~V}$ to 1.9 V ）， 1．8 V LVCMOS，or 2.5 V LVCMOS I／O on each port
a Burst counters for sequential memory access
\square Mailbox with interrupt flags for message passing
a Dual chip enables for easy depth expansion

Functional Description

The FullFlex ${ }^{\text {TM }}$ dual port SRAM families consist of 2－Mbit，9－Mbit， 18－Mbit，and 36－Mbit synchronous，true dual－port static RAMs that are high－speed，low－power 1.8 V or 1.5 V CMOS．Two ports are provided，enabling simultaneous access to the array． Simultaneous access to a location triggers deterministic access control．For FullFlex72 these ports operate independently with 72－bit bus widths and each port is independently configured for two pipelined stages．Each port is also configured to operate in pipelined or flow through mode．
The advanced features include the following：
■ Built－in deterministic access control to manage address collisions during simultaneous access to the same memory location
－Variable impedance matching（VIM）to improve data transmission by matching the output driver impedance to the line impedance

■ Echo clocks to improve data transfer
To reduce the static power consumption，chip enables power down the internal circuitry．The number of latency cycles，before a change in $\overline{\mathrm{CE}}_{0}$ or CE_{1} enables or disables the databus， matches the number of cycles of read latency selected for the device．For a valid write or read to occur，activate both chip enable inputs on a port．
Each port contains an optional burst counter on the input address register．After externally loading the counter with the initial address，the counter increments the address internally．
Additional device features include a mask register and a mirror register to control counter increments and wrap around．The counter interrupt（ $\overline{\mathrm{CNTINT}}$ ）flags notify the host that the counter reaches maximum count value on the next clock cycle．The host reads the burst counter internal address，mask register address， and busy address on the address lines．The host also loads the counter with the address stored in the mirror register by using the retransmit functionality．Mailbox interrupt flags are used for message passing，and JTAG boundary scan and asynchronous Master Reset（MRST）are also available．The Logic Block Diagram on page 2 shows these features．
The FullFlex72 is offered in a 484－ball plastic BGA package．The FullFlex36 and FullFlex18 are available in 256－ball fine pitch BGA package except the 36 －Mbit devices which are offered in 484－ball plastic BGA package．
For a complete list of related documentation，click here．

Note

1．HSTL support and the corresponding tests support has been removed from the device from WW1830．This change does not impact any other functionality．

Logic Block Diagram

The Logic Block Diagrams for the FullFlex72, FullFlex36, and FullFlex18 families follow. ${ }^{[2,3,4]}$

Notes

2. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.
3. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines
4. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.

Contents

Selection Guide 9
Pin Definitions 9
Functional Overview 11
Selectable IO Standard 11
Clocking 11
Selectable Pipelined or Flow through Mode 11
DLL 11
Echo Clocking 11
Deterministic Access Control 11
Variable Impedance Matching 12
Address Counter
and Mask Register Operations ${ }^{[28]}$ 13
Counter Load Operation [28] 13
Mask Load Operation ${ }^{[28]}$ 13
Counter Readback Operation 13
Mask Readback Operation 13
Counter Reset Operation 13
Mask Reset Operation 13
Increment Operation ${ }^{[31]}$ 15
Hold Operation 15
Retransmit 15
Counter Interrupt 15
Counting by Two 15
Counting by Four 15
Mailbox Interrupts 15
Master Reset 18
IEEE 1149.1 Serial Boundary Scan (JTAG) 18
Maximum Ratings 19
Operating Range 19
Power Supply Requirements 19
Electrical Characteristics 19
Electrical Characteristics 21
Electrical Characteristics 23
Capacitance 23
Thermal Resistance 23
AC Test Load and Waveforms 24
Switching Characteristics 25
Switching Waveforms 28
Ordering Information 42
$512 \mathrm{~K} \times 72$ (36-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD36S72V18 Dual-Port SRAM 42
$256 \mathrm{~K} \times 72$ (18-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD18S72V18 Dual-Port SRAM 42
$128 \mathrm{~K} \times 72$ (9-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD09S72V18 Dual-Port SRAM 42
$1024 \mathrm{~K} \times 36$ (36-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD36S36V18 Dual-Port SRAM 42
$512 \mathrm{~K} \times 36$ (18-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD18S36V18 Dual-Port SRAM 42
$256 \mathrm{~K} \times 36$ (9-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD09S36V18 Dual-Port SRAM 42
$64 \mathrm{~K} \times 36$ (2-Mbit) 1.8 V or 1.5 V
Synchronous CYD02S36V18 Dual-Port SRAM 42
$2048 \mathrm{~K} \times 18$ (36-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD36S18V18 Dual-Port SRAM 42
$1024 \mathrm{~K} \times 18$ (18-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD18S18V18 Dual-Port SRAM 42
$512 \mathrm{~K} \times 18$ (9-Mbit) $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$
Synchronous CYD09S18V18 Dual-Port SRAM 42
Ordering Code Definitions 43
Package Diagrams 44
Acronyms 47
Document Conventions 47
Units of Measure 47
Document History Page 48
Sales, Solutions, and Legal Information 51
Worldwide Sales and Design Support 51
Products 51
PSoC® Solutions 51
Cypress Developer Community 51
Technical Support 51

Figure 1．FullFlex72 SDR 484－ball BGA Pinout（Top View）

N	خ	$\begin{array}{\|l\|l} \hline \stackrel{\alpha}{\circ} \\ \stackrel{0}{\circ} \\ \text { O} \end{array}$		$\begin{array}{\|l\|l} \hline \underline{Y} \\ \hat{O} \\ \mathrm{O} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \frac{\alpha}{\circ} \\ 0 \\ \text { O} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{\Upsilon}{\lambda} \\ \text { ód } \\ \hline \end{array}$	皆	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\text { 年 }}{\text { ¢ }}$	号	毎	$\frac{\text { r }}{\frac{\alpha}{4}}$	$\frac{\stackrel{N}{N}}{\underset{\sim}{<}}$	$\frac{\mathfrak{Y}}{\underset{\sim}{4}}$	$\begin{array}{\|l\|} \hline \frac{\rightharpoonup}{d} \\ \frac{1}{d} \\ \stackrel{0}{4} \\ \hline \end{array}$		$\begin{array}{\|l\|l} \hline \stackrel{r}{0} \\ \text { on } \\ \hline 0 \end{array}$	$\begin{aligned} & \hline \stackrel{\alpha}{0} \\ & \text { ơ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{\alpha}{N} \\ & \underset{\alpha}{0} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{\alpha}{N} \\ \text { O} \\ \hline \end{array}$	$\stackrel{\sim}{N}$ 움	Z
\bar{N}	$\begin{aligned} & \text { প্x } \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$$	$$	$$	$\begin{array}{\|l\|l} \hline \propto \\ 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { 응 } \\ \text { O} \\ \hline \end{array}$	$\frac{\stackrel{x}{<}}{<}$	$\underset{\underset{\sim}{<}}{\substack{\alpha}}$	$\frac{\sqrt{2}}{8}$	$\underset{\mid c}{\stackrel{N}{\gtrless}}$	$\stackrel{\underset{\sim}{\mathrm{O}}}{\mathrm{q}}$	$\frac{\underset{\sim}{\tau}}{\underset{~}{c}}$	$\begin{aligned} & \frac{\alpha}{m} \\ & \frac{M}{<} \end{aligned}$	$\begin{array}{\|l} \frac{\underset{N}{n}}{\substack{4}} \end{array}$		$\underset{0}{2}$	$$	$\begin{array}{\|l\|l} \hline \stackrel{\alpha}{\sim} \\ \underset{\sim}{0} \\ \hline 0 \end{array}$		$$	$\begin{aligned} & \text { ro } \\ & 0 \\ & \text { O} \\ & \hline \end{aligned}$	N
N	$\begin{aligned} & \stackrel{\alpha}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { rơ } \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { 증 } \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\stackrel{\stackrel{x}{4}}{\underset{u}{u}}$	$\mid \underset{\sim}{\underset{\sim}{c}}$	$\left\lvert\, \begin{aligned} & \frac{\alpha}{\alpha} \\ & \frac{N}{2} \\ & \frac{N}{3} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\sim}{x} \\ & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{u} \end{aligned}\right.$		̛ㅡㄴ	$\stackrel{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & \substack{\aleph \\ \text { 若 }} \end{aligned}\right.$	$\sum_{\substack{\infty}}^{\sum_{i}^{\infty}}$	$\mid \text { \| }$		$\mid \sum_{\mathbb{\sim}}^{\mathbb{N}}$		$\stackrel{\circ}{\circ}$	$\begin{array}{\|l} \hline \mathrm{O} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\sim}{\underset{\sim}{Z}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{N}} \\ & \underset{O}{\mathrm{O}} \end{aligned}$
¢	$\begin{aligned} & \text { r } \\ & \\ & 0 \end{aligned}$		$\stackrel{\mathscr{n}}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & \text { 唇 } \end{aligned}\right.$			$\left\lvert\, \begin{aligned} & \text { 㗂 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { 足 } \\ & \stackrel{\sim}{u} \end{aligned}\right.$	\|㐍		$\left\lvert\, \begin{aligned} & \stackrel{\text { ๙ }}{\underset{\sim}{u}} \end{aligned}\right.$		$\left\lvert\, \begin{array}{l\|l\|l\|l\|l\|l\|} \substack{u \\ \hline} \end{array}\right.$	$\|\mid \underline{\underline{N}}$	$\begin{array}{\|l\|l} \stackrel{\sim}{\underset{\sim}{u}} \\ \hline \end{array}$	$$	$\bar{\square}$	\sum_{i}^{∞}	$\begin{aligned} & \underset{\sim}{\tilde{N}} \\ & \text { O} \end{aligned}$	$\underset{\sim}{\text { ¢ }}$
$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { 号 } \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { 资 } \\ & \text { O } \\ & 0 \end{aligned}$	$\begin{aligned} & \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \end{aligned}$	$\stackrel{\infty}{\infty}$	亥	$$	$$	$$	$$	$$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$$		$\begin{array}{\|l\|l} \hline \frac{\alpha}{0} \\ \text { O} \\ \hline \mathrm{O} \\ \hline \end{array}$	$$	$\left\lvert\, \begin{aligned} & \text { 步 } \\ & \substack{2} \end{aligned}\right.$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \frac{\alpha}{\sigma} \\ & \stackrel{\circ}{\alpha} \end{aligned}$	$\begin{aligned} & \frac{\alpha}{\infty} \\ & \underset{\alpha}{\circ} \end{aligned}$
F	$\begin{aligned} & \frac{\alpha}{5} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \text { Non } \\ & \hline \end{aligned}$		$\left\lvert\, \frac{\alpha}{\sigma}\right.$	$\begin{array}{\|l\|} \hline \frac{y}{0} \\ \mathrm{O} \\ \hline \mathrm{O} \\ \hline \end{array}$	$$	$$	$\begin{array}{\|l\|} \hline \frac{\mathrm{O}}{\mathrm{O}} \\ \mathrm{O} \\ \mathrm{O} \\ \hline \end{array}$	$$	$$	$\begin{array}{\|l\|l} \underset{\sim}{y} \\ \underset{O}{0} \\ \hline \end{array}$	$$		$\begin{array}{\|l\|} \hline \frac{y}{0} \\ \mathrm{O} \\ \mathrm{O} \\ \hline \end{array}$		$$	$\begin{array}{\|l\|l} \hline \frac{0}{0} \\ \mathrm{O} \\ \mathrm{O} \\ \hline \end{array}$	$$	$\left\lvert\, \begin{aligned} & \substack{\circ \\ O \\ 0} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \stackrel{\Omega}{\underset{O}{\mathrm{O}}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\sigma} \end{aligned}$	$\begin{aligned} & \frac{r}{n} \\ & \stackrel{y}{O} \\ & \hline \end{aligned}$
$\stackrel{\square}{\circ}$	茯		$\begin{aligned} & \text { r} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hline \frac{\mathrm{O}}{\mathrm{O}} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{\Upsilon}{0} \\ & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$		$$	$\begin{array}{\|l} \hline \frac{\Upsilon}{O} \\ \mathrm{O} \\ \mathrm{O} \\ \hline \end{array}$	$\begin{aligned} & \text { rờ } \\ & \text { O} \end{aligned}$	$\frac{\stackrel{\gamma}{\underset{G}{g}}}{\substack{0}}$	$\begin{aligned} & \stackrel{\alpha}{ल} \\ & \stackrel{\sim}{\mathrm{O}} \end{aligned}$	$\stackrel{\stackrel{N}{N}}{\stackrel{\circ}{\mathrm{O}}}$
$\stackrel{\square}{\square}$	$\begin{aligned} & \frac{r}{v} \\ & \substack{0 \\ 0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & O \\ & O \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \stackrel{Y}{\mathrm{O}} \\ & \hline \mathrm{O} \end{aligned}$	خ	증 음		$\mathscr{\sim}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\mathscr{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\square}$	∞	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$$	$$	$\underset{\sim}{\infty}$	$\stackrel{\stackrel{\alpha}{\tau}}{\underset{\sim}{\mathrm{O}}}$	$\begin{aligned} & \frac{\pi}{O} \\ & \hline \mathrm{O} \end{aligned}$	$\stackrel{\stackrel{\sim}{0}}{\substack{0 \\ \hline}}$
\pm	$\begin{aligned} & \underset{\sim}{y} \\ & \underset{O}{O} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { 守 } \\ & \underset{O}{0} \end{aligned}$	$\begin{array}{\|c} \overline{0} \\ \omega \\ \\ \underset{0}{\alpha} \\ \hline \end{array}$	$\begin{aligned} & \text { 증 } \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { 증 } \\ & \text { O} \\ & \mathrm{O} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$			$\begin{aligned} & \stackrel{\alpha}{\infty} \\ & \text { of } \end{aligned}$	$\stackrel{\text { 足 }}{\text { O}}$	$\begin{array}{\|l} \stackrel{y}{\circ} \\ \text { O} \\ \hline \end{array}$
$\stackrel{\square}{\square}$	僉	$\begin{aligned} & \stackrel{O}{O} \\ & \underset{O}{O} \\ & 0 \end{aligned}$	$\begin{array}{\|l} \stackrel{r}{d} \\ \underset{O}{O} \end{array}$	$\mid{ }_{\|c\|}^{\substack{z}}$	$\stackrel{E}{5}$	$\begin{array}{\|l} \underset{\sim}{x} \\ \text { O} \\ 0 \\ \hline \end{array}$	$\stackrel{\infty}{>}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\square}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{>}$	$\stackrel{\oplus}{>}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l} \underset{\sim}{0} \\ 0 \\ 0 \\ \hline \end{array}$			$$	$\begin{aligned} & \frac{ֻ}{\square} \\ & \underset{O}{\circ} \end{aligned}$	$\stackrel{\substack{0 \\ 0 \\ 0}}{ }$
N	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{array}{\|l\|} \stackrel{N}{\tilde{O}} \\ \hline 0 \end{array}$	$\begin{array}{\|c} \substack{\infty \\ 0 \\ \underset{O}{0} \\ \hline} \end{array}$	$\left\lvert\, \begin{aligned} & \frac{1}{2} \\ & \substack{2 \\ \hline} \end{aligned}\right.$	$\stackrel{E}{5}$	$\begin{aligned} & \frac{\mathrm{O}}{0} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \infty \end{array}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{>}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \hline \underset{\text { 区 }}{\substack{0}} \\ \hline 0 \\ \hline \end{array}$	$\stackrel{E}{5}$	$\begin{array}{\|l\|} \hline \frac{\pi}{n} \\ \underset{\sim}{N} \\ \underset{\sim}{N} \\ \hline \end{array}$	$\begin{array}{\|l} \underset{\sim}{\underset{\sim}{\mathrm{O}}} \end{array}$	$\frac{\stackrel{x}{\sigma}}{\substack{0}}$							
F	$\begin{aligned} & \text { す్ల్ర } \\ & \text { O} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { त्रु } \\ \text { O} \end{array}$	$\begin{aligned} & \text { d } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{1}{5}$	$\begin{array}{\|l\|} \hline \underset{\sim}{0} \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \infty \\ \infty \end{array}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\mathscr{\sim}$	$\stackrel{\infty}{\infty}$	$\mathscr{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\begin{array}{\|l\|l\|} \hline \text { w } \\ \text { O} \\ 0 \\ \hline \end{array}$	$\frac{E}{5}$	$$	금	$\stackrel{1}{\mathrm{~g}}$	O
안	$\begin{aligned} & \text { ప్ర్ర } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { ó } \\ & \text { d } \\ & \text { O} \end{aligned}$	$\stackrel{I}{\dot{G}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{\|l} \text { w } \\ \\ 0 \\ \hline \end{array}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{>}$	$\begin{array}{\|l\|l} \hline \underset{\nwarrow}{w} \\ 0 \\ 0 \\ \hline \end{array}$	$\stackrel{1}{5}$		$\begin{aligned} & \text { H్ర } \\ & \hline 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	＂							
の	哭		$\begin{aligned} & \dot{F} \\ & \underset{O}{\circ} \end{aligned}$	1 0 0 0 0 3 3	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{9} \end{aligned}$	$\frac{\mathrm{U}}{0}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\mathscr{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{\|l} \stackrel{0}{0} \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & \hline \frac{\alpha}{\vdots} \\ & \omega \\ & \omega \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	珨	人	\％
∞	荷	$\begin{aligned} & \text { d } \\ & \text { d } \\ & \text { d} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	응	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{>}$	$\begin{array}{\|l} \infty \\ \end{array}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{>}$	$\stackrel{\oplus}{>}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ㅁ } \\ & \text { 음 } \end{aligned}$	Z	$\stackrel{\stackrel{\rightharpoonup}{\bar{O}}}{\dot{O}}$	$\stackrel{\text { O}}{\circ}$	¢ ${ }_{\text {O}}^{0}$
N	$\stackrel{0}{0}$	守	$\begin{aligned} & 1 \\ & 0 \\ & 08 \\ & 0 \end{aligned}$	$\frac{1}{\sigma}$	$\begin{aligned} & \frac{1}{0} \\ & \stackrel{0}{9} \end{aligned}$	$\begin{aligned} & \text { 믈 } \\ & \frac{1}{\circ} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{4} \\ \stackrel{\rightharpoonup}{w} \\ \stackrel{y}{y} \end{array}$	$\stackrel{\mathscr{n}}{\infty}$	$\stackrel{\infty}{>}$	$\stackrel{\oplus}{>}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{4} \\ \stackrel{\rightharpoonup}{w} \\ \stackrel{y}{y} \end{array}$	$\begin{aligned} & \text { ㅁ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & \hline \end{aligned}$	すơ	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{J}}}{\dot{\mathrm{~g}}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{\circ}{6}}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\substack{\text { a }}}$
\bullet	$\begin{aligned} & \stackrel{1}{\mathbf{j}} \\ & \underset{8}{8} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 1 } \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \frac{1}{\hat{O}}\right.$	$\frac{\stackrel{\rightharpoonup}{0}}{\circ}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \hline \end{array}$	$\begin{array}{\|l} \stackrel{\rightharpoonup}{0} \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { ㅁ } \\ \text { O } \\ \hline \mathrm{O} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 山 \\ \stackrel{y}{0} \\ \mathrm{O} \\ \hline> \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \underset{\sim}{c} \\ \text { O} \\ \hline \end{array}$		믕	$\begin{array}{\|l\|} \hline \frac{1}{0} \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ㅁ } \\ & \text { 응 } \end{aligned}$	$\stackrel{\text { ㅁ }}{\circ}$	$\begin{array}{\|l} \hline \stackrel{\rightharpoonup}{\circ} \\ \text { 号 } \\ \hline \end{array}$	\|ờ	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathrm{O}}$	$\stackrel{\text { O}}{\circ}$	$\stackrel{\stackrel{1}{\circ}}{\square}$
\bigcirc	$\begin{aligned} & \underset{\sim}{\underset{O}{0}} \\ & \stackrel{O}{0} \end{aligned}$	$\begin{array}{\|l\|l} 1 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { d } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\frac{E}{5}$	$\stackrel{1}{5}$	$\frac{1}{5}$	$\begin{aligned} & \hline \text { ㅇ } \\ & \text { 응 } \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	Z	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { İ } \\ & \text { din } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\sim}{\square}$
＋	$\begin{aligned} & \text { N } \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{0} \\ \text { O} \\ 0 \end{array}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	\|岂		\|岗	$\text { \| } \begin{aligned} & \text { 岀 } \end{aligned}$	\|岗	\|岗	$\mid \text { \|岗 }$	\|牭	$\text { \| } \mid \stackrel{\rightharpoonup}{\underset{\sim}{\omega}}$	\|炭	$\mid \underline{\underline{E}}$	$\begin{aligned} & \sum_{u}^{1} \\ & \underset{\sim}{O} \end{aligned}$	$\begin{aligned} & \hline \text { ত } \\ & \text { 응 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\omega}{\infty} \\ & \frac{N}{\Sigma} \end{aligned}\right.$	$\stackrel{\oplus}{\varnothing}$	충	－
\cdots	$\begin{aligned} & \text { স্ত } \\ & \text { O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { d } \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\infty}{>}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{u}}$	$\mid \underset{\substack{\underset{x}{u}}}{\underset{\sim}{x}}$	$\left\lvert\, \begin{aligned} & \frac{1}{n} \\ & \stackrel{y}{c} \\ & \stackrel{y}{c} \end{aligned}\right.$	\|希		〕	$\stackrel{\infty}{\infty}$			$\|\mid \underset{u}{\mid c}$			$\text { \| } \mid \text { 灵 }$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { 금 } \end{gathered}$	$\xrightarrow[\sim]{\widetilde{\sim}}$
N	$\begin{array}{\|l\|l\|} \hline \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\circ}{8} \end{array}$	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \text { Og } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { d } \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ \text { O} \\ \hline \end{array}$	$\begin{aligned} & \text { D. } \\ & \text { O} \\ & 0 \end{aligned}$	$\frac{1}{4}$	$\underset{~}{\text { m }}$	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{\mathfrak{k}}$	$\underset{\underset{\sim}{x}}{ }$	$\frac{\underset{F}{\underset{~}{2}}}{}$	$\frac{\stackrel{m}{4}}{4}$	$\frac{\stackrel{\rightharpoonup}{6}}{4}$		خ	$\begin{aligned} & \text { f } \\ & \text { g } \end{aligned}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\mathrm{O}} \\ \text { O} \end{array}$	$\begin{aligned} & \hline \text { ত্ত্ত } \\ & \text { O} \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ö } \\ \text { ğ } \\ \hline \end{array}$	烒
－	$\underset{\Delta}{\mathrm{Z}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{8} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & 0.0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{O} \end{aligned}$	$\begin{aligned} & \text { d } \\ & \stackrel{\circ}{8} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\hat{O}}$	名	$\overrightarrow{\mathbb{~}}$	$\not \underset{\&}{z}$	$\underset{\text { 区 }}{\mathbb{\alpha}}$	号	$\frac{\text { D }}{\mathbf{<}}$	$\frac{\vec{N}}{\underset{~}{<}}$	$\frac{\underset{J}{\gtrless}}{\underset{~}{2}}$	$\begin{aligned} & \hline \stackrel{\Phi}{\Phi} \\ & \stackrel{\rightharpoonup}{<} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ل్ల } \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ⿸ㅡ } \\ & \text { g} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { ब } \\ & \text { O} \\ & \text { O} \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathrm{O}} \\ \text { O} \end{array}$	Z
	＜		O		山		\bigcirc			צ	－	Σ	z	Q	¢			＞	3	$>$	＜	\％

Notes
5．Leave this ball unconnected to disable VIM．
5．Leave this ball unconnected to disable VIM．
6．This ball is applicable only for 36 －Mbit and DNU for 18 －Mbit and lower densities． 7．Leave this ball unconnected for CYD18S72V18．

Document Number：38－06082 Rev．＊S
ส

 | 亏 |
| :--- | :--- |
| 号 |
| 2 |

 \begin{tabular}{|l|l|}
\hline$\frac{\alpha}{\alpha}$

$\frac{\infty}{4}$

\hline

亏．

O
\end{tabular}

 $\stackrel{\circ}{\sim}$

$\stackrel{3}{2}$	亏	$\stackrel{\infty}{8}$	$\stackrel{\infty}{\square}$	$\begin{aligned} & \stackrel{\circ}{O} \\ & \stackrel{\partial}{\mathrm{O}} \end{aligned}$	$\underset{\sim}{\underset{U}{u}}$	$\mid \underset{\underline{x}}{\underline{x}}$	$\left\lvert\, \begin{gathered} \substack{x \\ 0 \\ \\ \hline} \end{gathered}\right.$			0	
3	亏	$\stackrel{\infty}{\infty}$	¢	∞	\|拿	$\mid{ }_{\sim}^{\sim}$	䠜	3	亏		

sı

\div

 $\stackrel{\infty}{\infty}$ $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$

$\stackrel{\rightharpoonup}{\mathrm{O}}$	∞
$\stackrel{\infty}{\mathrm{O}}$	$\stackrel{\infty}{>}$

응

$$
\circ
$$

vss
 $\stackrel{\infty}{n} \underset{\sim}{n}$
 E
 DQ27L 5
 $\stackrel{8}{8}$

\qquad

茳	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { d} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \stackrel{Y}{O} \\ & \text { O} \\ & \hline 0 \end{aligned}$	$\stackrel{\text { N}}{0}$ 0	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{8}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \stackrel{\alpha}{0} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \stackrel{y}{O} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & ⺊_{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	领	$\stackrel{\text { ¢ }}{\text { O}}$
즘	$\begin{array}{\|l\|l\|l\|} \hline \text { äd } \\ \hline \end{array}$		$\left\|\begin{array}{l} \infty \\ \gg \end{array}\right\|$	$\begin{aligned} & \text { 关 } \\ & \text { 이 } \end{aligned}$	$\begin{aligned} & \text { 吴 } \\ & \frac{0}{0} \\ & \end{aligned}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{>}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \mathscr{\infty} \\ & \gg \end{aligned}$	$\stackrel{\sim}{8}$	$\stackrel{\infty}{>}$	$\begin{gathered} \mathscr{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\square}$	$\begin{aligned} & \frac{\Omega}{0} \\ & \stackrel{O}{0} \\ & \hline \end{aligned}$		䓂	$\stackrel{\rightharpoonup}{\bar{c}}$	$\begin{aligned} & \text { ob } \\ & \stackrel{\circ}{8} \end{aligned}$	$\stackrel{\text { ¢ }}{\square}$
$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l} \stackrel{\rightharpoonup}{0} \\ 0 \end{array}$	$\begin{aligned} & \text { d } \\ & \text { og } \end{aligned}$	$\frac{\vec{~}}{\mathrm{~g}}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & \text { 足 } \\ & \frac{0}{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{山} \\ & \stackrel{\rightharpoonup}{y} \end{aligned}$	$\begin{aligned} & \mathscr{\infty} \\ & \gg \end{aligned}$	$\stackrel{\sim}{8}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \mathscr{\infty} \\ & \gg \end{aligned}$	$\stackrel{\sim}{8}$	$\stackrel{\infty}{>}$	$\stackrel{\oplus}{>}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{4}} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \stackrel{\alpha}{0} \\ & \stackrel{O}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \frac{y}{t} \\ & \underset{8}{c} \end{aligned}$	$\begin{aligned} & \text { ल్ } \\ & \stackrel{y}{8} \end{aligned}$	N
哭	$\begin{array}{\|l\|l} \hline \text { 管 } \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { ㅁ } \\ & \text { 응 } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \text { ㅁ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { ㅁ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 흠 } \\ & \stackrel{y}{\circ} \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\widetilde{0}} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { 흠 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 믐 } \\ & \text { D, } \end{aligned}$	$\begin{aligned} & \text { 흠 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ㅁ } \\ & \text { 응 } \end{aligned}$		\|ờ	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\rightharpoonup}{\text { b }}$
亏	亏	亏	$\stackrel{\infty}{8}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { 흠 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{O}}{\mathrm{O}} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { 〇ㅇ } \end{aligned}$	$\stackrel{\text { 응 }}{\circ}$	$\frac{1}{5}$	E	$\frac{1}{5}$	$\begin{aligned} & \text { 흐 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \bigcirc \end{aligned}$	$\stackrel{\text { 흥 }}{\circ}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { 〇ㅇ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { 〇ㄱ } \end{aligned}$		$\stackrel{\sim}{\sim}$	$\bar{\Sigma}$	$\stackrel{3}{\square}$	$\stackrel{\rightharpoonup}{\square}$

玄

亏	亏	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{8}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	需	\|花	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{n} \\ \frac{k}{3} \end{gathered}\right.$	\|袋		Ј	¢	$\left\lvert\, \begin{array}{\|l\|} \mid \vec{\sigma} \\ \text { 号 } \end{array}\right.$		\|㙳		$\left.\right\|_{\underset{\sim}{x}} ^{\underset{\sim}{s}}$		$\stackrel{\text { ¢ }}{\substack{\text { n }}}$	$\stackrel{め}{8}$	悥	z
亏	\bigcirc	$\stackrel{\rightharpoonup}{\mathrm{L}}$	悥		云	㐫	帯	尔	な	安	咅	$\begin{array}{\|l\|} \hline \frac{M}{4} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \frac{\rightharpoonup}{8} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \hline \end{aligned}$	$\frac{\square}{\square}$	悥	亏訁	亏訁	亏	亏訁	亏
Z	亏	亏े	悥	悥	悥	家	尔	者	¢	玺	$\frac{\square}{8}$	$\begin{array}{\|l\|l\|} \hline \frac{\rightharpoonup}{4} \\ \hline \end{array}$	$\frac{\vec{t}}{\stackrel{\rightharpoonup}{d}}$	$\frac{\stackrel{\rightharpoonup}{4}}{\square}$	$\frac{\stackrel{\rightharpoonup}{4}}{\square}$	悥	亏訁	亏亏	䓂	亏亏	言

10．Use this pinout only for the CYD36S36V18 device of the FullFlex36 family．
11．Leave this ball unconnected to disable VIM．
Document Number：38－06082 Rev．＊S
ก \square言

 ～～ミ
－ミ悥
 $\stackrel{N}{\circ}$

$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$ | O |
| :--- |
| $\frac{O}{O}$ |
| O |〒 录悉

		3	亏⿳亠二口欠口⿱⿵人一口⿻上丨	$\frac{\alpha}{\bar{c}}$	$\begin{aligned} & \mathrm{O} \\ & \frac{\mathrm{O}}{\mathrm{O}} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{y}{4} \\ \stackrel{y}{4} \\ \stackrel{W}{\sim} \end{array}$	$\stackrel{\oplus}{\infty} \underset{>}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{>}$	$\stackrel{\oplus}{>}$	$\stackrel{\infty}{8}$	$\stackrel{\infty}{8}$	$\stackrel{\infty}{8}$	$\stackrel{\text { ® }}{\square}$	$\begin{array}{\|l\|l} \stackrel{y}{4} \\ \stackrel{y}{y} \\ \hline \end{array}$		흥					家

Figure 3．FullFlex18 SDR 484－ball BGA Pinout（Top View）${ }^{[12]}$

$$
\stackrel{\varrho}{\square}
$$

\square云 $\stackrel{\rightharpoonup}{\mathrm{O}}$ 흠

 $\stackrel{\infty}{\infty}$
亏
\square
 믐

 $\stackrel{\circ}{\circ}$

 VCORE
 वु

을
은
O

 $\stackrel{\mathscr{\infty}}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty}$

긍
응

| 亏 | 亏 | $\stackrel{\infty}{8}$ | $\stackrel{\sim}{8}$ | $\stackrel{\infty}{\sim}$ | \|気| | $\mid \text { \|訕 }$ | 云 | $\underset{\Delta}{2}$ | 亏⿳亠二口丿口刂 | ｜${ }_{\text {｜}}^{\text {¢ }}$ | 亏訁 | 亏 | 亏⿳亠二口欠口⿱亠䒑𧰨 | \|岂 | 䂞 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

๓
응

 U \begin{tabular}{l|l|l|l|}
\hline A20L \& DNU \& R $\overline{W L}$

\hline

 v

\hline DNU \& DNU \& FTSELL

\hline
\end{tabular}

Notes
14. Leave this ball unconnected to disable VIM.
15. Leave this ball unconnected for CYD09S36V18 and CYD02S36V18.
16. Leave this ball unconnected for CYD02S36V18. 16. Leave this ball unconnected for CYD02S36V18.
17. Leave this ball unconnected for CYD02S36V18.
Document Number: 38-06082 Rev. *S

	Figure 5. FullFlex18 SDR 256-ball BGA (Top View)															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A	DNU	DNU	DNU	DQ17L	DQ16L	DQ13L	DQ12L	DQ9L	DQ9R	DQ12R	DQ13R	DQ16R	DQ17R	DNU	DNU	DNU
B	DNU	DNU	DNU	DNU	DQ15L	DQ14L	DQ11L	DQ10L	DQ10R	DQ11R	DQ14R	DQ15R	DNU	DNU	DNU	DNU
C	DNU	DNU	$\overline{\text { RETL }}$	$\overline{\text { INTL }}$	CQ1L	$\overline{\text { CQ1L }}$	DNU	$\overline{\text { TRST }}$	$\overline{\text { MRST }}$	ZQ0R ${ }^{[18]}$	$\overline{\text { CQ1R }}$	CQ1R	$\overline{\text { INTR }}$	$\overline{\text { RETR }}$	DNU	DNU
D	AOL	A1L	$\overline{\text { WRPL }}$	VREFL	$\overline{\text { FTSELL }}$	$\overline{\text { LOWSPDL }}$	VSS	VTTL	VTTL	VSS	$\overline{\text { LOWSPDR }}$	$\overline{\text { FTSELR }}$	VREFR	$\overline{\text { WRPR }}$	A1R	A0R
E	A2L	A3L	$\overline{\mathrm{CEOL}}$	CE1L	VDDIOL	VDDIOL	VDDIOL	VCORE	VCORE	VDDIOR	VDDIOR	VDDIOR	CE1R	$\overline{\text { CE0R }}$	A3R	A2R
F	A4L	A5L	$\overline{\text { CNTINTL }}$	DNU	VDDIOL	VSS	VSS	VSS	VSS	VSS	VSS	VDDIOR	DNU	$\overline{\text { CNTINTR }}$	A5R	A4R
G	A6L	A7L	$\overline{\text { BUSYL }}$	DNU	ZQ0L ${ }^{[18]}$	VSS	VSS	VSS	VSS	VSS	VSS	VDDIOR	DNU	BUSYR	A7R	A6R
H	A8L	A9L	CL	VTTL	VCORE	VSS	VSS	VSS	VSS	VSS	VSS	VCORE	VTTL	CR	A9R	A8R
J	A10L	A11L	VSS	PORTSTD1L	VCORE	VSS	VSS	VSS	VSS	VSS	VSS	VCORE	PORTSTD1R	VSS	A11R	A10R
K	A12L	A13L	OEL	BE1L	VDDIOL	VSS	VSS	VSS	VSS	VSS	VSS	VDDIOR	BE1R	OER	A13R	A12R
L	A14L	A15L	$\overline{\text { ADSL }}$	$\overline{\mathrm{BEOL}}$	VDDIOL	VSS	VSS	VSS	VSS	VSS	VSS	VDDIOR	BE0R	$\overline{\text { ADSR }}$	A15R	A14R
M	A16L	A17L	$\mathrm{R} / \overline{\mathrm{WL}}$	CQENL	VDDIOL	VDDIOL	VDDIOL	VCORE	VCORE	VDDIOR	VDDIOR	VDDIOR	CQENR	$\mathrm{R} / \overline{\mathrm{WR}}$	A17R	A16R
N	A18L ${ }^{[20]}$	A19L ${ }^{[19]}$	CNT/MSKL	VREFL	PORTSTD0L	$\overline{\text { READYL }}$	DNU	VTTL	VTTL	DNU	READYR	PORTSTD0R	VREFR	CNT/MSKR	A19R ${ }^{[19]}$	A18R ${ }^{[20]}$
P	DNU	DNU	$\overline{\text { CNTENL }}$	$\overline{\text { CNTRSTL }}$	CQOL	CQ0L	TCK	TMS	TDO	TDI	CQ0R	CQ0R	CNTRSTR	CNTENR	DNU	DNU
R	DNU	DNU	DNU	DNU	DQ6L	DQ5L	DQ2L	DQ1L	DQ1R	DQ2R	DQ5R	DQ6R	DNU	DNU	DNU	DNU
T	DNU	DNU	DNU	DQ8L	DQ7L	DQ4L	DQ3L	DQ0L	DQ0R	DQ3R	DQ4R	DQ7R	DQ8R	DNU	DNU	DNU

[^0]Document Number: 38-06082 Rev. *S

Selection Guide

Parameter	$\mathbf{- 2 0 0}$	$\mathbf{- 1 6 7}$	Unit
$\mathrm{f}_{\text {MAX }^{[22]}}$	200	167	MHz
Maximum access time (clock to data)	3.3	4.0	ns
Typical operating current $\mathrm{ICC}_{\text {C }}$	$800^{[21]}$	$700^{[21]}$	mA
Typical standby current for $\mathrm{I}_{\text {SB3 }}$ (both ports CMOS level)	$210^{[21]}$	$210^{[21]}$	mA

Pin Definitions

Left Port	Right Port	Description
A[20:0] ${ }_{\text {L }}$	$\mathrm{A}[20: 0]_{R}$	Address inputs. ${ }^{[23]}$
DQ[71:0]L	DQ $[71: 0]_{R}$	Data bus input and output. ${ }^{[24]}$
$\overline{\mathrm{BE}}[7: 0]_{\mathrm{L}}$	$\overline{\mathrm{BE}}[7: 0]_{\mathrm{R}}$	Byte select inputs. ${ }^{[25]}$ Asserting these signals enables read and write operations to the corresponding bytes of the memory array.
$\overline{\operatorname{BUSY}}_{\text {L }}$	$\overline{\mathrm{BUSY}}_{\mathrm{R}}$	Port busy output. When there is an address match and both chip enables are active for both ports, an external BUSY signal is asserted on the fifth clock cycles from when the collision occurs.
C_{L}	C_{R}	Clock signal. Maximum clock input rate is $\mathrm{f}_{\text {MAX }}$.
$\overline{\mathrm{CEO}}_{\mathrm{L}}$	$\overline{\mathrm{CEO}}_{\mathrm{R}}$	Active LOW chip enable input.
CE1 ${ }_{\text {L }}$	CE1 ${ }_{\text {R }}$	Active HIGH chip enable input.
$\mathrm{CQEN}_{\mathrm{L}}$	$\mathrm{CQEN}_{\mathrm{R}}$	Echo clock enable input. Assert HIGH to enable echo clocking on respective port.
CQ0 ${ }_{\text {L }}$	$\mathrm{CQ0}_{\mathrm{R}}$	Echo clock signal output for DQ[35:0] for FulIFlex72 devices. Echo clock signal output for DQ[17:0] for FullFlex36 devices. Echo clock signal output for DQ[8:0] for FullFlex18 devices.
$\overline{\mathrm{CQO}}_{\mathrm{L}}$	$\overline{\mathrm{CQ0}}_{\mathrm{R}}$	Inverted echo clock signal output for DQ[35:0] for FullFlex72 devices. Inverted echo clock signal output for DQ[17:0] for FullFlex36 devices. Inverted echo clock signal output for DQ[8:0] for FullFlex18 devices.
CQ1 ${ }_{\text {L }}$	$\mathrm{CQ1}_{\mathrm{R}}$	Echo clock signal output for DQ[71:36] for FullFlex72 devices. Echo clock signal output for DQ[35:18] for FullFlex36 devices. Echo clock signal output for DQ[17:9] for FullFlex18 devices.
$\overline{\text { CQ1 }}_{\text {L }}$	$\overline{\mathrm{CQ1}}_{\mathrm{R}}$	Inverted echo clock signal output for DQ[71:36] for FullFlex72 devices. Inverted echo clock signal output for DQ[35:18] for FullFlex36 devices. Inverted echo clock signal output for DQ[17:9] for FullFlex18 devices.
ZQ[1:0]L	ZQ[1:0] ${ }_{\text {R }}$	VIM output impedance matching input. ${ }^{[26]}$ To use, connect a calibrating resistor between ZQ and ground. The resistor must be five times larger than the intended line impedance driven by the dual port. Assert HIGH or leave DNU to disable VIM.
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output enable input. This asynchronous signal must be asserted LOW to enable the DQ data pins during read operations.
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Mailbox interrupt flag output. The mailbox permits communications between ports. The upper two memory locations are used for message passing. $\mathrm{INT}_{\mathrm{L}}$ is asserted LOW when the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox.

Notes

21. For 18 Mbit x 72 commercial configuration only; refer to Electrical Characteristics on page 19 for complete information.
22. SDR mode with two pipelined stages.
23. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.
24. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex 18 family of devices has 18 data lines.
25. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex 18 family of devices has two byte enables.
26. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.

Pin Definitions (continued)

Left Port	Right Port	Description
$\overline{\text { LowSPD }}_{\text {L }}$	$\overline{\text { LowSPD }}_{\text {R }}$	Port low speed select input. Assert this pin LOW to disable the DLL. In flow through mode, this pin needs to be asserted low.
${ }_{\text {28] }}{ }^{\text {PORTSTD[1:0]L }}{ }^{\text {[27, }}$	${ }_{28]}^{\text {PORTSTD[1:0]R }}$ [${ }^{[27,}$	Port clock/Address/Control/Data/Echo clock/I/O standard select input. Assert these pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5 V LVCMOS, and HIGH/HIGH for 1.8 V LVCMOS, respectively. These pins are driven by VTTL referenced levels.
$\mathrm{R} \bar{W}_{\mathrm{L}}$	$\mathrm{R} \bar{W}_{\mathrm{R}}$	Read/Write enable input. Assert this pin LOW to write to, or HIGH to read from the dual port memory array.
$\overline{\text { READY }}_{\text {L }}$	$\overline{\operatorname{READY}}_{\mathrm{R}}$	Port DLL ready output. This signal is asserted LOW when the DLL and variable impedance matching circuits complete calibration. This is a wired OR capable output.
CNT/ $\overline{\text { MSK }}_{\text {L }}$	CNT/ $\overline{\text { MSK }}_{\text {R }}$	Port counter/Mask select input. Counter control input.
$\overline{\mathrm{ADS}}_{\mathrm{L}}$	$\overline{\mathrm{ADS}}_{\mathrm{R}}$	Port counter address load strobe input. Counter control input.
$\overline{\text { CNTEN }}_{\text {L }}$	$\overline{\mathrm{CNTEN}}_{\text {R }}$	Port counter enable input. Counter control input.
$\overline{\text { CNTRST }}$ L $^{\text {L }}$	$\overline{\text { CNTRST }}_{\text {R }}$	Port counter reset input. Counter control input.
$\overline{\text { CNTINT }}$ L $^{\text {l }}$	$\overline{\text { CNTINT }}_{\text {R }}$	Port counter interrupt output. This pin is asserted LOW one cycle before the unmasked portion of the counter is incremented to all "1s".
$\overline{\overline{W R P}}_{\mathrm{L}}$	$\overline{\mathrm{WRP}}_{\mathrm{R}}$	Port counter wrap input. When the burst counter reaches the maximum count, on the next counter increment WRP is set LOW to load the unmasked counter bits to 0 . It is set HIGH to load the counter with the value stored in the mirror register.
$\overline{\overline{R E T}_{L}}$	$\overline{\mathrm{RET}}_{\mathrm{R}}$	Port counter retransmit input. Assert this pin LOW to reload the initial address for repeated access to the same segment of memory.
VREF $^{[28]}$	$\mathrm{VREF}_{\mathrm{R}}{ }^{[28]}$	Port external HSTL I/O reference input. This pin is left DNU when HSTL is not used.
VDDIOL	VDDIO_{R}	Port data I/O power supply.
$\overline{\text { FTSEL }}_{\text {L }}$	$\overline{\text { FTSEL }}_{\text {R }}$	Port flow through mode select input. Assert this pin LOW to select flow through mode. Assert this pin HIGH to select Pipelined mode.
$\overline{\overline{\text { MRST }}}$		Master reset input. $\overline{\text { MRST }}$ is an asynchronous input signal and affects both ports. Asserting MRST LOW performs all of the reset functions as described in the text. A MRST operation is required at power up. This pin is driven by a VDDIO ${ }_{L}$ referenced signal.
TMS		JTAG test mode select input. It controls the advance of JTAG TAP state machine. State machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5 V LVCMOS.
TDI		JTAG test data input. Data on the TDI input is shifted serially into selected registers. Operation for LVTTL or 2.5 V LVCMOS.
$\overline{\text { TRST }}$		JTAG reset input. Operation for LVTTL or 2.5 V LVCMOS.
TCK		JTAG test clock input. Operation for LVTTL or 2.5 V LVCMOS.
TDO		JTAG test data output. TDO transitions occur on the falling edge of TCK. TDO is normally tri-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL or 2.5 V LVCMOS.
VSS		Ground inputs.
VCORE		Device core power supply.
VTTL		LVTTL power supply.

Notes

27. PORTSTD[1:0] $]_{L}$ and PORTSTD[1:0] $]_{R}$ have internal pull-down resistors.
28. HSTL support and the corresponding tests support has been removed from the device from WW1830. This change does not impact any other functionality.

Functional Overview

Selectable I/O Standard

The FullFlex device families offer the option to choose one of the four port standards for the device. Each port independently selects standards from single-ended HSTL class I, single-ended LVTTL, 2.5 V LVCMOS, or 1.8 V LVCMOS. The selection of the standard is determined by the PORTSTD pins for each port. These pins must be connected to an LVTTL power suppy. This determines the input clock, address, control, data, and Echo clock standard for each port as shown in Table 1.

Table 1. Port Standard Selection

PORTSTD1	PORTSTD0	I/O Standard
VSS	VSS	LVTTL
VSS	VTTL	HSTL
VTTL	VSS	2.5 V LVCMOS
VTTL	VTTL	1.8 V LVCMOS

Clocking

Separate clocks synchronize the operations on each port. Each port has one clock input C . In this mode, all the transactions on the address, control, and data are on the C rising edge. All transactions on the address, control, data input, output, and byte enables occur on the C rising edge.
Table 2. Data Pin Assignment

$\overline{\mathrm{BE}}$ Pin Name	Data Pin Name
$\overline{\mathrm{BE}}[7]$	$\mathrm{DQ}[71: 63]$
$\overline{\mathrm{BE}}[6]$	$\mathrm{DQ}[62: 54]$
$\overline{\mathrm{BE}}[5]$	$\mathrm{DQ}[53: 45]$
$\overline{\mathrm{BE}}[4]$	$\mathrm{DQ}[44: 36]$
$\overline{\mathrm{BE}}[3]$	$\mathrm{DQ}[35: 27]$
$\overline{\mathrm{BE}}[2]$	$\mathrm{DQ}[26: 18]$
$\overline{\mathrm{BE}}[1]$	$\mathrm{DQ}[17: 9]$
$\overline{\mathrm{BE}}[0]$	$\mathrm{DQ}[8: 0]$

Selectable Pipelined or Flow through Mode

To meet data rate and throughput requirements, the FullFlex families offer selectable pipelined or flow through mode. Echo clocks are not supported in flow through mode and the DLL must be disabled.
Flow through mode is selected by the FTSEL pin. Strapping this pin HIGH selects pipelined mode. Strapping this pin LOW selects flow through mode.

DLL

The FullFlex familes of devices have an on-chip DLL. Enabling the DLL reduces the clock to data valid ($t_{C D}$) time enabling more setup time for the receiving device. In flow through mode, the DLL must be disabled. This is selectable by strapping LowSPD low.

Whenever the operating frequency is altered beyond the Clock Input Cycle to Cycle Jitter specification, reset the DLL, followed by 1024 clocks before any valid operation.
$\overline{\text { LowSPD }}$ pins are used to reset the DLLs for a single port independent of all other circuitry. MRST is used to reset all DLLs on the chip. For more information on DLL lock and reset time, see Master Reset on page 18.

Echo Clocking

As the speed of data increases, on-board delays caused by parasitics make it extremely difficult to provide accurate clock trees. To counter this problem, the FullFlex families incorporate Echo Clocks. Echo Clocks are enabled on a per port basis. The dual port receives input clocks that are used to clock in the address and control signals for a read operation. The dual port retransmits the input clocks relative to the data output. The buffered clocks are provided on the CQ1/CQ1 and CQ0/CQ0 outputs. Each port has a pair of Echo clocks. Each clock is associated with half the data bits. The output clock matches the corresponding ports I/O configuration.
To enable echo clock outputs, tie CQEN HIGH. To disable echo clock outputs, tie CQEN LOW.

Figure 6. SDR Echo Clock Delay

Deterministic Access Control

Deterministic Access Control is provided for ease of design. The circuitry detects when both ports access the same location and provides an external BUSY flag to the port on which data is corrupted. The collision detection logic saves the address in conflict (Busy Address) to a readable register. In the case of multiple collisions, the first busy address is written to the busy address register.
If both ports access the same location at the same time and only one port is doing a write, if $\mathrm{t}_{\mathrm{CCS}}$ is met, then the data written to and read from the address is valid data. For example, if the right port is reading and the left port is writing and the left ports clock meets $\mathrm{t}_{\mathrm{ccs}}$, then the data read from the address by the right port is the old data. In the same case, if the right ports clock meets $t_{\text {CCS }}$, then the data read out of the address from the right port is the new data. In the above case, if $\mathrm{t}_{\mathrm{Ccs}}$ is violated by the either ports clock with respect to the other port and the right port gets the external BUSY flag, the data from the right port is corrupted. Table 3 on page 12 shows the $\mathrm{t}_{\mathrm{CCS}}$ timing that must be met to guarantee the data.
Table 4 on page 12 shows that, in the case of the left port writing and the right port reading, when an external BUSY flag is asserted on the right port, the data read out of the device is not guaranteed.
The value in the busy address register is read back to the address lines. The required input control signals for this function are shown in Table 7 on page 14. The value in the busy address register is read out to the address lines $t_{C A}$ after the same CYDXXS18V18
none of the addresses are saved into the busy address register. When a busy readback is performed, the address of the first match that happens at least two clocks cycles after the busy readback is saved into the busy address register.
amount of latency as a data read operation. After an initial address match, the $\overline{B U S Y}$ flag is asserted and the address under contention is saved in the busy address register. All the following address matches enable to generate the BUSY flag. However,

Table 3. $\mathbf{t}_{\text {ccs }}$ Timing for All Operating Modes

Port A - Early Arriving Port	Port B - Late Arriving Port	$\mathbf{t}_{\text {CCs }}$	Unit		
Mode	Active Edge	Mode		C Rise to Opposite C Rise Setup Time for Non Corrupt Data	
SDR	C	SDR	C	$\mathrm{t}_{\mathrm{CYC}(\min)}-0.5$	ns

Table 4. Deterministic Access Control Logic

Left Port	Right Port	Left Clock	Right Clock	$\overline{B U S Y}_{\text {L }}$	$\overline{B U S Y}_{\text {R }}$	Description
Read	Read	X	X	H	H	No collision
Write	Read	$>\mathrm{t}_{\mathrm{CCS}}$	0	H	H	Read OLD data
		0	$>\mathrm{t}_{\mathrm{CCS}}$	H	H	Read NEW data
		$<\mathrm{t}_{\mathrm{CCS}}$	0	H	H	Read OLD data
				H	L	Data not guaranteed
		0	$<\mathrm{t}_{\mathrm{CCS}}$	H	H	Read NEW data
				H	L	Data Not guaranteed
Read	Write	$>\mathrm{t}_{\mathrm{CCS}}$	0	H	H	Read NEW data
		0	$>\mathrm{t}_{\mathrm{CCS}}$	H	H	Read OLD data
		$<\mathrm{t}_{\mathrm{CCS}}$	0	H	H	Read NEW data
				L	H	Data Not guaranteed
		0	$<\mathrm{t}_{\mathrm{CCS}}$	H	H	Read OLD data
				L	H	Data not guaranteed
Write	Write	0	$>-\mathrm{t}_{\operatorname{ccs}} \&<\mathrm{t}_{\mathrm{CCS}}$	L	L	Array data corrupted
		0	$>\mathrm{t}_{\mathrm{CCS}}$	L	H	Array stores right port data
		$>\mathrm{t}_{\mathrm{CCS}}$	0	H	L	Array stores left port data

Variable Impedance Matching

Each port contains a variable impedance matching circuit to set the impedance of the I/O driver to match the impedance of the on-board traces. The impedance is set for all outputs except JTAG and is done by port. To take advantage of the VIM feature, connect a calibrating resistor (RQ) that is five times the value of the intended line impedance from the $Z Q_{[1: 0]}{ }^{[29]}$ pin to V_{SS}. The output impedance is then adjusted to account for drifts in supply voltage and temperature every 1024 clock cycles. If a port's clock is suspended, the VIM circuit retains its last setting until the clock is restarted. On restart, it then resumes periodic adjustment. In the case of a significant change in device temperature or supply voltage, recalibration happens every 1024 clock cycles. A master reset initializes the VIM circuitry. Table 5 shows the VIM parameters and Table 6 describes the VIM operation modes.
To disable VIM, connect the ZQ pin to VDDIO of the relative supply for the I/Os before a Master Reset.

Table 5. Variable Impedance Matching Parameters

Parameter	Min	Max	Unit	Tolerance
RQ value	100	275	Ω	$\pm 2 \%$
Output impedance	20	55	Ω	$\pm 15 \%$
Reset time	-	1024	Cycles	-
Update time	-	1024	Cycles	-

Table 6. Variable Impedance Matching Operation

RQ Connection	Output Configuration
$100 \Omega-275 \Omega$ to V	Output driver impedance $=$ RQ/5 $\pm 15 \%$ at Vout = VDDIO/2
ZQ to VDDIO	VIM disabled. Rout $\leq 20 \Omega$ at Vout $=$ VDDIO/2

Note
29. The pin $Z Q[1]$ is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.

Address Counter and Mask Register Operations ${ }^{[30]}$

Each port of the FullFlex family contains a programmable burst address counter. The burst counter contains four registers: a counter register, a mask register, a mirror register, and a busy address register.
The counter register contains the address used to access the RAM array. It is changed only by the master reset (MRST), counter reset, counter load, retransmit, and counter increment operations.
The mask register value affects the counter increment and counter reset operations by preventing the corresponding bits of the counter register from changing. It also affects the counter interrupt output (CNTINT). The mask register is only changed by mask reset, mask load, and MRST. The mask load operation loads the value of the address bus into the mask register. The mask register defines the counting range of the counter register. The mask register is divided into two or three consecutive regions. Zero or more 0s define the masked region and one or more 1s define the unmasked portion of the counter register. The counter register may be divided up to three regions. The region containing the least significant bits must be no more than two 0s. Bits one and zero may be 10 respectively, masking the least significant counter bit and causing the counter to increment by two instead of one. If bits one and zero are 00, the two least significant bits are masked and the counter increments by four instead of one. For example, in the case of a $256 \mathrm{~K} \times 72$ configuration, a mask register value of 003FC divides the mask register into three regions. With bit 0 being the least significant bit and bit 17 being the most significant bit, the two least significant bits are masked, the next eight bits are unmasked, and the remaining bits are masked.
The mirror register reloads a counter register on retransmit operations (see Retransmit on page 15) and wrap functions (see Counter Interrupt on page 15 below). The last value loaded into the counter register is stored in the mirror register. The mirror register is only changed by master reset (MRST), counter reset, and counter load.
Table 7 on page 14 summarizes the operations of these registers and the required input control signals. All signals except MRST are synchronized to the ports clock.

Counter Load Operation ${ }^{[30]}$

For both non-burst and burst read or write accesses, the external address is loaded through counter load operation as shown in Table 7 on page 14. The address counter and mirror registers are loaded with the address value presented on the address lines. This value ranges from 0 to 1FFFFF.

Mask Load Operation ${ }^{[30]}$

The mask register is loaded with the address value presented on the address bus. This value ranges from 0 to 1FFFFF though not all values permit correct increment operations. Permitted values are in the form of $2^{n}-1,2^{n}-2$, or $2^{n}-4$. The counter register is only segmented up to three regions. From the most significant bit to the least significant bit, permitted values have zero or more 0s, one or more 1s, and the least significant two bits are 11, 10, or 00 . Thus 1FFFFE, 07FFFF, and 003FFC are permitted values but 02FFFF, 003FFA, and 07FFE4 are not.

Counter Readback Operation

The internal value of the counter register is read out on the address lines. The address is valid $t_{C A}$ after the selected number of latency cycles configured by FTSEL. The data bus (DQ) is tri-stated on the cycle that the address is presented on the address lines. Figure 7 on page 16 shows a block diagram of this logic.

Mask Readback Operation

The internal value of the mask register is read out on the address lines. The address is valid $t_{C A}$ after the selected number of latency cycles configured by FTSEL. The data bus (DQ) is tri-stated on the cycle that the address is presented on the address lines. Figure 7 on page 16 shows a block diagram of the operation.

Counter Reset Operation

All unmasked bits of the counter and mirror registers are reset to ' 0 '. All masked bits remain unchanged. A mask reset followed by a counter reset resets the counter and mirror registers to 00000.

Mask Reset Operation

The mask register is reset to all 1 s , that unmasks every bit of the burst counter.

Note

30. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.

Table 7. Burst Counter and Mask Register Control Operations
The burst counter and mask register control operation for any port follows. [31, 32]

C	$\overline{\text { MRST }}$	$\overline{\text { CNTRST }}$	CNT/MSK	$\overline{\text { CNTEN }}$	$\overline{\text { ADS }}$	$\overline{\text { RET }}$	Operation	Description		
X	L	X	X	X	X	X	Master reset	$\begin{array}{l}\text { Reset address counter to all 0s, mask } \\ \text { register to all 1s, and busy address to all Os. }\end{array}$		
-	H	L	H	X	X	X	Counter reset	$\begin{array}{l}\text { Reset counter and mirror unmasked portion } \\ \text { to all 0s. }\end{array}$		
-	H	L	L	X	X	X	Mask reset	Reset mask register to all 1s.		
-	H	H	H	L	L	X	$\begin{array}{l}\text { Counter load } \\ \text { burst/external addres } \\ \text { load for non-burst }\end{array}$	Load burst counter and mirror with external		
address value presented on address lines.									$]$	Load mask register with value presented on
:---										
the address lines.										

Notes

31. "X" = Don't Care, "H" = HIGH, "L" = LOW.
32. Counter operation and mask register operation is independent of chip enables.

Increment Operation ${ }^{\text {[33] }}$

After the address counter is initially loaded with an external address, the counter can internally increment the address value and address the entire memory array. Only the unmasked bits of the counter register are incremented. For a counter bit to change, the corresponding bit in the mask register must be 1. If the two least significant bits of the mask register are 11, the burst counter increments by one. If the two least significant bits are 10, the burst counter increments by two, and if they are 00, the burst counter increments by four. If all unmasked counter bits are incremented to 1 and WRP is deasserted, the next increment I wraps the counter back to the initially loaded value. The cycle before the increment that results in all unmasked counter bits to become 1s, a counter interrupt flag (CNTINT) is asserted if the counter is incremented again. This increment causes the counter to reach its maximum value and the next increment returns the counter register to its initial value that was stored in the mirror register if WRP is deasserted. If $\overline{W R P}$ is asserted, the unmasked portion of the counter is filled with 0 instead. The example shown in Figure 8 on page 17 shows an example of the CYDD36S18V18 device with the mask register loaded with a mask value of 00007F unmasking the seven least significant bits. Setting the mask register to this value enables the counter to access the entire memory space. The address counter is then loaded with an initial value of 000005 assuming $\overline{W R P}$ is deasserted. The masked bits, the seventh address through the twenty-first address, do not increment in an increment operation. The counter address starts at address 000005 and increments its internal address value until it reaches the mask register value of 00007 F . The counter wraps around the memory block to location 000005 at the next count. CNTINT is issued when the counter reaches the maximum -1 count.

Hold Operation

The value of all three registers is constantly maintained unchanged for an unlimited number of clock cycles. This operation is useful in applications where wait states are needed or when address is available a few cycles ahead of data in a shared bus interface.

Retransmit

Retransmit enables repeated access to the same block of memory without the need to reload the initial address. An internal mirror register stores the address counter value last loaded. While RET is asserted low, the counter continues to wrap back to the value in the mirror register independent of the state of $\overline{W R P}$.

Counter Interrupt

The counter interrupt ($\overline{\text { CNTINT }}$) is asserted LOW one clock cycle before an increment operation that results in the unmasked portion of the counter register being all 1 s . It is deasserted by counter reset, counter load, counter increment, mask reset, mask load, and MRST.

Counting by Two

When the two least significant bits of the mask register are 10 , the counter increments by two.

Counting by Four

When the two least significant bits of the mask register are 00, the counter increments by four.

Mailbox Interrupts

Use the upper two memory locations for message passing and permit communications between ports. Table 8 on page 17 shows the interrupt operation for both ports. The highest memory location is the mailbox for the right port and the maximum address - 1 is the mailbox for the left port.
When one port writes to the other port's mailbox, the $\overline{\mathrm{INT}}$ flag of the port that the mailbox belongs to is asserted LOW. The INT flag remains asserted until the mailbox location is read by the other port. When a port reads its mailbox, the INT flag is deasserted high after one cycle of latency with respect to the input clock of the port to which the mailbox belongs and is independent of $\overline{\mathrm{OE}}$.
As shown in Table 8 on page 17, to set the $\overline{\mathrm{INT}}_{\mathrm{R}}$ flag, a write operation by the left port to address 1FFFFF asserts INT ${ }_{R}$ LOW. A valid read of the 1FFFFF location by the right port resets $\overline{N T}_{R}$ HIGH after one cycle of latency with respect to the right port's clock. You must activate at least one byte enable to set or reset the mailbox interrupt.

[^1]Figure 7 shows the counter, mask, and mirror logic block diagram. ${ }^{[34]}$
Figure 7. Counter, Mask, and Mirror Logic Block Diagram

Note

34. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.

Figure 8 shows the programmable counter-mask operation with WRP deasserted. [38, 40]

Figure 8. Programmable Counter-Mask Register Operation with WRP deasserted

Table 8. Interrupt Operation Example
Table 8 shows the interrupt operation example. [35, 36, 37, 39, 40]

Function	Left Port				Right Port			
	$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\mathrm{A}_{0 \mathrm{~L}-20 \mathrm{~L}}$	$\overline{\mathbf{I N T}}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	$\mathrm{A}_{0 \mathrm{R}-20 \mathrm{R}}$	$\overline{\mathbf{I N T}}_{\mathrm{R}}$
Set Right $\overline{\mathrm{INT}}_{\mathrm{R}}$ Flag	L	L	Max Address	X	X	X	X	L
Reset Right $\overline{\mathrm{INT}}_{\mathrm{R}}$ Flag	X	X	X	X	H	L	Max Address	H
Set Left $\overline{\mathrm{NT}}_{\mathrm{L}}$ Flag	X	X	X	L	L	L	Max Address-1	X
Reset Left $\overline{\mathrm{NT}}_{\text {L }}$ Flag	H	L	Max Address-1	H	X	X	X	X

[^2]
Master Reset

The FullFlex family of Dual Ports undergoes a complete reset when MRST is asserted. MRST must be driven by VDDIO ${ }_{L}$ referenced levels. The MRST is asserted asynchronously to the clocks and must remain asserted for at least t_{Rs}. When asserted MRST deasserts READY, initializes the internal burst counters, internal mirror registers, and internal busy addresses to zero. It also initializes the internal mask register to all 1s. All mailbox interrupts (INT), busy address outputs ($\overline{\mathrm{BUSY}}$), and burst counter interrupts (CNTINT) are deasserted upon master reset. Additionally, do not release MRST until all power supplies including VREF are fully ramped and all port clocks and mode select inputs (LOWSPD, ZQ, CQEN, FTSEL, and PORTSTD) are valid and stable. This begins calibration of the DLL and VIM circuits. $\overline{\text { READY }}$ is asserted within 1024 clock cycles. READY is a wired OR capable output with a strong pull up and weak pull down. Up to four outputs may be connected together. For faster pull down of the signal, connect a 250 Ohm resistor to VSS. If the DLL and VIM circuits are disabled for a port, the port is operational within five clock cycles. However, the READY is asserted within 160 clock cycles.

IEEE 1149.1 Serial Boundary Scan (JTAG)

The FullFlex families incorporate an IEEE 1149.1 serial boundary scan test access port (TAP). The TAP operates using JEDEC-standard 3.3 V or 2.5 V I/O logic levels depending on the VTTL power supply. It is composed of four input connections and one output connection required by the test logic defined by the standard.

Table 9. JTAG IDCODE Register Definitions

Part Number	Configuration	Value
CYD36S72V18	$512 \mathrm{~K} \times 72$	$0 \mathrm{C} 026069 \mathrm{~h}(\times 2)$
CYD36S36V18	$1024 \mathrm{~K} \times 36$	0 C 023069 h
CYD36S18V18	$2048 \mathrm{~K} \times 18$	0 C 024069 h
CYD18S72V18	$256 \mathrm{~K} \times 72$	0 C 025069 h
CYD18S36V18	$512 \mathrm{~K} \times 36$	0 C 026069 h
CYD18S18V18	$1024 \mathrm{~K} \times 18$	0 C 027069 h
CYD09S72V18	$128 \mathrm{~K} \times 72$	0 C 028069 h
CYD09S36V18	$256 \mathrm{~K} \times 36$	0 C 029069 h
CYD09S18V18	$512 \mathrm{~K} \times 18$	0 C 02 A 069 h
CYD02S36V18	$64 \mathrm{~K} \times 36$	0 C 030069 h

Table 10. Scan Registers Sizes

Register Name	Bit Size
Instruction	4
Bypass	1
Identification	32
Boundary Scan	$\mathrm{n}^{[41]}$

Table 11. Instruction Identification Codes

Instruction	Code	Description
EXTEST	0000	Captures the input and output ring contents. Places the BSR between the TDI and TDO.
BYPASS	1111	Places the BYR between TDI and TDO.
IDCODE	1011	Loads the IDR with the vendor ID code and places the register between TDI and TDO.
HIGHZ	0111	Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers to a High Z state.
CLAMP	0100	Controls boundary to 1 or 0. Places BYR between TDI and TDO.
SAMPLE/PRELOAD	1000	Captures the input and output ring contents. Places BSR between TDI and TDO.
RESERVED	All other codes	Other combinations are reserved. Do not use other than the mentioned combinations.

Note

41. Details of the boundary scan length is found in the BSDL file for the device. CYDXXS18V18

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. User guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage to ground potential -0.5 V to +4.1 V
DC voltage applied to outputs
in high Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{DDIO}}+0.5 \mathrm{~V}$
DC input voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{DDIO}}+0.5 \mathrm{~V}$
Output current into outputs (LOW) \qquad 20 mA

Static discharge voltage
(JEDEC JESD8-6, JESD8-B)> 2200 V
Latch-up current \qquad $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCORE
Commercial	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \pm 100 \mathrm{mV}$ $1.5 \mathrm{~V} \pm 80 \mathrm{mV}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \pm 100 \mathrm{mV}$ $1.5 \mathrm{~V} \pm 80 \mathrm{mV}$

Power Supply Requirements

	Min	Typ	Max
LVTTL $\mathrm{V}_{\text {DDIO }}$	3.0 V	3.3 V	3.6 V
2.5 V LVCMOS $\mathrm{V}_{\text {DDIO }}$	2.3 V	2.5 V	2.7 V
HSTL V DDIO $^{[44]}$	1.4 V	1.5 V	1.9 V
1.8 V LVCMOS $\mathrm{V}_{\text {DDIO }}$	1.7 V	1.8 V	1.9 V
3.3 V VTTL	3.0 V	3.3 V	3.6 V
2.5 V VTTL	2.3 V	2.5 V	2.7 V
HSTL $\mathrm{V}_{\text {REF }}$	0.68 V	0.75 V	0.95 V

Electrical Characteristics

Over the Operating Range

Parameter	Description	Configuration	All Speed Bins			Unit
			Min	Typ	Max	
V_{OH}	Output HIGH voltage $\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}\right)$	LVTTL	$2.4{ }^{[42]}$	-	-	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$	HSTL (DC) ${ }^{[43]}$	$\mathrm{V}_{\text {DDIO }}-0.4{ }^{[42]}$	-	-	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$	HSTL (AC) ${ }^{[43]}$	$\mathrm{V}_{\text {DDIO }}-0.5{ }^{[42]}$	-	-	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}\right)$	2.5 V LVCMOS	$1.7{ }^{[42]}$	-	-	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$	1.8 V LVCMOS	$\mathrm{V}_{\text {DDIO }}-0.45{ }^{[42]}$	-	-	V
V_{OL}	$\begin{aligned} & \text { Output HIGH voltage } \\ & \left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}\right) \\ & \hline \end{aligned}$	LVTTL	-	-	$0.4{ }^{[42]}$	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}\right)$	HSTL(DC) ${ }^{[43]}$	-	-	$0.4{ }^{[42]}$	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}\right)$	HSTL (AC) ${ }^{[43]}$	-	-	$0.5{ }^{[42]}$	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}\right)$	2.5 V LVCMOS	-	-	$0.7{ }^{[42]}$	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}\right)$	1.8 V LVCMOS	-	-	$0.45{ }^{[42]}$	V
V_{IH}	Input HIGH voltage	LVTTL	2	-	$\mathrm{V}_{\text {DDIO }}+0.3$	V
		HSTL(DC) ${ }^{[43]}$	$\mathrm{V}_{\text {REF }}+0.1$	-	$\mathrm{V}_{\text {DDIO }}+0.3$	V
		2.5 V LVCMOS	1.7	-		V
		1.8 V LVCMOS	$0.65 \times \mathrm{V}_{\text {DDIO }}$	-		V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage	LVTTL	-0.3	-	0.8	V
		HSTL(DC) ${ }^{[43]}$	-0.3	-	$\mathrm{V}_{\text {REF }}-0.1$	V
		2.5 V LVCMOS	-	-	0.7	V
		1.8 V LVCMOS	-	-	$0.35 \times \mathrm{V}_{\text {DDIO }}$	V

Notes

42. These parameters are met with $\mathrm{V}_{I M}$ disabled
43. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC $V_{I H} / V_{\text {IL }}$ in $H S T L$ mode are measured with $1 \mathrm{~V} / \mathrm{ns}$ input edge rates.
44. HSTL Support and the corresponding tests support has been removed from the device from WW1830. No other functionality is impacted with this change

Electrical Characteristics (continued)

Over the Operating Range

Parameter	Description	Configuration	All Speed Bins			Unit
			Min	Typ	Max	
$\begin{aligned} & \overline{\mathrm{READY}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Output HIGH voltage $\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}\right)$	LVTTL	$2.7{ }^{[45]}$	-	-	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\right)$	HSTL(DC) ${ }^{[46,47]}$	$\mathrm{V}_{\text {DDIO }}-0.4{ }^{[45]}$	-	-	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\right)$	HSTL (AC) ${ }^{[46.47]}$	$\mathrm{V}_{\text {DDIO }}-0.5{ }^{[45]}$	-	-	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\right)$	2.5 V LVCMOS	$2.0{ }^{[45]}$	-	-	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\right)$	1.8 V LVCMOS	$\mathrm{V}_{\text {DDIO }}-0.45^{[45]}$	-	-	V
$\begin{aligned} & \overline{\mathrm{READY}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	Output HIGH voltage $\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.12 \mathrm{~mA}\right)$	LVTTL	-	-	$0.4{ }^{[45]}$	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.12 \mathrm{~mA}\right)$	HSTL(DC) ${ }^{[46,47]}$	-	-	$0.4{ }^{[45]}$	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.12 \mathrm{~mA}\right)$	HSTL (AC) ${ }^{[46,47]}$	-	-	$0.5{ }^{[45]}$	V
	$\left(\mathrm{V}_{\text {DDIO }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.15 \mathrm{~mA}\right)$	2.5 V LVCMOS	-	-	$0.7{ }^{[45]}$	V
	$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.08 \mathrm{~mA}\right)$	1.8 V LVCMOS	-	-	$0.45{ }^{[45]}$	V
l_{OZ}	Output leakage current		-10	-	10	$\mu \mathrm{A}$
IIX1	Input leakage current except TDI, TMS, MRST, PORTSTD		-10	-	10	$\mu \mathrm{A}$
IIX2	Input leakage current TDI, TMS, MRST		-300	-	10	$\mu \mathrm{A}$
IIX3	Input leakage current PORTSTD		-10	-	300	$\mu \mathrm{A}$

Notes

45. These parameters are met with V_{IM} disabled.
46. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC $V_{I H} / V_{\text {IL }}$ in $H S T L$ mode are measured with $1 \mathrm{~V} / \mathrm{ns}$ input edge rates.
47. HSTL Support and the corresponding tests support has been removed from the device from WW1830. No other functionality is impacted with this change

Electrical Characteristics

Over the Operating Range

Parameter	Description	Configuration		-200		-167		Unit
				Typ	Max	Typ	Max	
I_{Cc}	Operating current $\left(\mathrm{V}_{\text {CORE }}=\mathrm{Max}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}\right)$ outputs disabled	$512 \mathrm{~K} \times 72$	Commercial	1440	1800	1280	1620	mA
			Industrial	-	-	1330	1730	mA
		$1024 \mathrm{~K} \times 36$	Commercial	1180	1500	1050	1350	mA
			Industrial	-	-	1110	1470	mA
		$2048 \mathrm{~K} \times 18$	Commercial	1130	1430	1000	1290	mA
			Industrial	-	-	1060	1410	mA
		$256 \mathrm{~K} \times 72$	Commercial	800	980	700	880	mA
			Industrial	820	1030	730	930	mA
		$512 \mathrm{~K} \times 36$	Commercial	640	800	570	720	mA
			Industrial	670	860	590	780	mA
		1024K $\times 18$	Commercial	610	770	540	690	mA
			Industrial	640	830	570	750	mA
		$128 \mathrm{~K} \times 72$	Commercial	640	790	560	700	mA
			Industrial	660	830	580	740	mA
		$256 \mathrm{~K} \times 36$	Commercial	540	640	470	570	mA
			Industrial	550	670	490	600	mA
		$512 \mathrm{~K} \times 18$	Commercial	550	660	480	580	mA
			Industrial	570	690	500	610	mA
		$64 \mathrm{~K} \times 36$	Commercial	-	-	-	-	mA
			Industrial	-	-	-	-	mA
$\mathrm{I}_{\text {SB1 }}$	Standby current (both ports TTL Level) $\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$	$512 \mathrm{~K} \times 72$	Commercial	1000	1250	920	1160	mA
			Industrial	-	-	970	1260	mA
		$1024 \mathrm{~K} \times 36$	Commercial	910	1140	820	1050	mA
			Industrial	-	-	880	1160	mA
		$2048 \mathrm{~K} \times 18$	Commercial	890	1110	810	1030	mA
			Industrial	-	-	860	1140	mA
		$256 \mathrm{~K} \times 72$	Commercial	500	630	460	580	mA
			Industrial	530	680	490	630	mA
		$512 \mathrm{~K} \times 36$	Commercial	460	570	410	530	mA
			Industrial	480	630	440	580	mA
		1024K $\times 18$	Commercial	450	560	410	520	mA
			Industrial	470	610	430	570	mA
		$128 \mathrm{~K} \times 72$	Commercial	400	490	360	450	mA
			Industrial	420	540	380	490	mA
		$256 \mathrm{~K} \times 36$	Commercial	380	440	340	400	mA
			Industrial	390	470	360	430	mA
		$512 \mathrm{~K} \times 18$	Commercial	390	460	350	410	mA
			Industrial	410	480	370	440	mA
		$64 \mathrm{~K} \times 36$	Commercial	-	-	-	-	mA
			Industrial	-	-	-	-	mA

Electrical Characteristics (continued)

Over the Operating Range

Parameter	Description	Configuration		-200		-167		Unit
				Typ	Max	Typ	Max	
$\mathrm{I}_{\text {SB2 }}$	Standby current (one port TTL or CMOS level) $\overline{C E}_{L} \mid \overline{C E}_{R} \geq V_{I H}, f=f_{M A X}$	$512 \mathrm{~K} \times 72$	Commercial	1300	1570	1160	1410	mA
			Industrial	-	-	1210	1520	mA
		$1024 \mathrm{~K} \times 36$	Commercial	1090	1330	980	1210	mA
			Industrial	-	-	1030	1330	mA
		$2048 \mathrm{~K} \times 18$	Commercial	1040	1270	930	1160	mA
			Industrial	-	-	980	1270	mA
		$256 \mathrm{~K} \times 72$	Commercial	650	790	580	710	mA
			Industrial	680	840	610	760	mA
		$512 \mathrm{~K} \times 36$	Commercial	550	670	490	610	mA
			Industrial	570	730	520	670	mA
		1024K $\times 18$	Commercial	520	640	470	580	mA
			Industrial	550	690	490	640	mA
		$128 \mathrm{~K} \times 72$	Commercial	520	630	460	560	mA
			Industrial	550	670	480	610	mA
		$256 \mathrm{~K} \times 36$	Commercial	460	530	400	470	mA
			Industrial	480	560	430	500	mA
		$512 \mathrm{~K} \times 18$	Commercial	460	530	410	480	mA
			Industrial	480	560	430	510	mA
		$64 \mathrm{~K} \times 36$	Commercial	-	-	-	-	mA
			Industrial	-	-	-	-	mA

Electrical Characteristics

Over the Operating Range

Parameter	Description	Configuration		All Speed Bins		Unit
				Typ	Max	
$\mathrm{I}_{\text {SB3 }}$	Standby current (both ports CMOS level) CE_{L} and $\mathrm{CE}_{\mathrm{R}} \geq \mathrm{V}_{\text {CORE }}-0.2 \mathrm{~V}, \mathrm{f}=0$	$512 \mathrm{~K} \times 72$	Commercial	410	590	mA
			Industrial	460	700	mA
		$1024 \mathrm{~K} \times 36$	Commercial	410	590	mA
			Industrial	460	700	mA
		$2048 \mathrm{~K} \times 18$	Commercial	410	590	mA
			Industrial	460	700	mA
		$256 \mathrm{~K} \times 72$	Commercial	210	300	mA
			Industrial	230	350	mA
		$512 \mathrm{~K} \times 36$	Commercial	210	300	mA
			Industrial	230	350	mA
		$1024 \mathrm{~K} \times 18$	Commercial	210	300	mA
			Industrial	230	350	mA
		$128 \mathrm{~K} \times 72$	Commercial	150	200	mA
			Industrial	170	220	mA
		$256 \mathrm{~K} \times 36$	Commercial	150	200	mA
			Industrial	170	220	mA
		$512 \mathrm{~K} \times 18$	Commercial	150	200	mA
			Industrial	170	220	mA

Capacitance

| Signals | $\begin{array}{c}\text { CYD18S72V18[54] } \\ \text { CYDO9S72V18 } \\ \text { CYD18S36V18 } \\ \text { CYD09S36V18 } \\ \text { CYD02S36V18 }\end{array}$ | $\begin{array}{c}\text { CYD18S18V18 } \\ \text { CYD09S18V18 }\end{array}$ | $\begin{array}{c}\text { CYD36S72V18 } \\ \text { CYD36S36V18 }\end{array}$ | CYD36S18V18 |
| :--- | :---: | :---: | :---: | :---: |$]$

Thermal Resistance

Parameter	Description	Test Conditions	484-ball BGA	256-ball BGA (18 Mbit only)	256-ball BGA $\mathbf{2 ~ M b i t) ~}$	Unit
$\theta_{\text {JA }}$	Thermal resistance (junction to ambient)	Still air, soldered on a 3 $\times 4.5$ inch, four-layer printed circuit board	14.92	17.02	18.31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			3.6	1.25	1.68	$0^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$	Thermal resistance (junction to case)					

AC Test Load and Waveforms

Figure 9. Output Test Load for LVTTL/CMOS

Figure 10. Output Test Load for HSTL ${ }^{[54]}$

Figure 11. HSTL Input Waveform ${ }^{[54]}$

AC Input Test Signal Waveform


```
Vswing \(=1.0 \mathrm{~V}\)
VREF \(=0.75 \mathrm{~V}\)
\(V_{I H}=1.25 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IL}}=0.25 \mathrm{~V}\)
Slew \(=2.0 \mathrm{~V} / \mathrm{ns}\)
All input parameters are referenced to VREF
``` CYDXXS18V18

\section*{Switching Characteristics}

\section*{Over the Operating Range}

Table 12. SDR Mode, Signals Affected by DLL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Parameter} & Description & \multicolumn{4}{|c|}{DLL ON (LOWSPD \(=1)^{[50]}\)} & \multicolumn{2}{|l|}{DLL OFF (\(\overline{\text { LOWSPD }}=0)^{[50]}\)} & \\
\hline & & \multicolumn{2}{|c|}{-200} & \multicolumn{2}{|c|}{-167} & & & \\
\hline & & Min & Max & Min & Max & Min & Max & Unit \\
\hline \(\mathrm{t}_{\mathrm{CD} 2}{ }^{\text {[53] }}\) & C rise to DQ valid for pipelined mode & - & \(3.30^{[49,52]}\) & - & \(4.00{ }^{[49,52]}\) & - & \(6.00{ }^{[49,52]}\) & ns \\
\hline \(\mathrm{t}_{\mathrm{CCQ}}{ }^{[53]}\) & C rise to CQ rise & 1.00 & \(3.30{ }^{[52]}\) & 1.00 & \(4.00^{[52]}\) & 1.00 & \(6.00^{[52]}\) & ns \\
\hline \(\mathrm{t}_{\text {CKHZ2 }}{ }^{[48,53]}\) & \(C\) rise to \(D Q\) output high \(Z\) in pipelined mode & 1.00 & \(3.30^{[49,52]}\) & 1.00 & \(4.00{ }^{[49,52]}\) & 1.00 & \(6.00{ }^{[49,52]}\) & ns \\
\hline \(\mathrm{t}_{\text {CKLZ2 }}{ }^{[48,53]}\) & \(C\) rise to \(D Q\) output low \(Z\) in pipelined mode & 1.00 & - & 1.00 & - & 1.00 & - & ns \\
\hline
\end{tabular}

Table 13. SDR Mode
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Parameter} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Description}} & \multicolumn{2}{|l|}{-200} & \multicolumn{2}{|l|}{-167} & \multirow{2}{*}{Unit} \\
\hline & & & Min & Max & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) (Pipelined) & \multicolumn{2}{|l|}{Maximum operating frequency for pipelined mode} & 100 & 200 & 100 & 167 & MHz \\
\hline \[
\begin{aligned}
& \mathrm{f}_{\text {MAX }} \text { (FLOW } \\
& \text { THROUGH) }
\end{aligned}
\] & \multicolumn{2}{|l|}{Maximum operating frequency for flow through mode} & - & 77 & - & 66.7 & MHz \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\text {cyc }} \\
& \text { (PIPELINED) }
\end{aligned}
\] & \multicolumn{2}{|l|}{C clock cycle time for pipelined mode} & \(5.00^{[52]}\) & 10.00 & \(6.00^{[52]}\) & 10.00 & ns \\
\hline \(\mathrm{t}_{\mathrm{CYC}}\) (FLow x THROUGH) & \multicolumn{2}{|l|}{C clock cycle time for flow through mode} & \(13.00^{[52]}\) & - & \(15.00^{[52]}\) & - & ns \\
\hline \({ }^{\text {t CKD }}\) & \multicolumn{2}{|l|}{C clock duty time} & 45 & 55 & 45 & 55 & \% \\
\hline \multirow[t]{2}{*}{\({ }^{\text {t }}\) S} & \multirow[t]{2}{*}{Data input setup time to C rise} & \[
\begin{aligned}
& \text { HSTL } \\
& 1.8 \mathrm{~V} \text { LVCMOS }
\end{aligned}
\] & \(1.50{ }^{[49,52]}\) & - & \(1.70^{[49,52]}\) & - & ns \\
\hline & & 2.5 V LVCMOS 3.3 V LVTTL & \(1.75{ }^{[49,52]}\) & - & \(1.95{ }^{[49,52]}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}{ }^{[51]}\) & \multicolumn{2}{|l|}{Data input hold time after C rise} & 0.5 & - & 0.5 & - & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\text {SAC }}\)} & \multirow[t]{2}{*}{Address and control input setup time to C rise} & \[
\begin{aligned}
& \mathrm{HSTL}^{[54]} \\
& 1.8 \mathrm{~V} \mathrm{~L} \mathrm{VCMOS}
\end{aligned}
\] & \(1.50{ }^{[49,51,52]}\) & - & \(1.70^{[49,51,52]}\) & - & ns \\
\hline & & 2.5 V LVCMOS
3.3 V LVTTL & \(1.75{ }^{[49,51,52]}\) & - & \(1.95{ }^{[49,51,52]}\) & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HAC}}{ }^{[51]}\) & \multicolumn{2}{|l|}{Address and control input hold time after C rise} & 0.50 & - & 0.60 & - & ns \\
\hline toe & \multicolumn{2}{|l|}{Output enable to data valid} & - & \(4.40{ }^{[49,52]}\) & - & \(5.00{ }^{[49,52]}\) & ns \\
\hline \(\mathrm{t}_{\mathrm{OLz}}{ }^{[48]}\) & \multicolumn{2}{|l|}{\(\overline{\mathrm{OE}}\) to low Z} & 1.00 & - & 1.00 & - & ns \\
\hline
\end{tabular}

\footnotetext{
Notes
48. Parameters specified with the load capacitance in Figure 9 on page 24 and Figure 10 on page 24.
49. For the \(x 18\) devices, add 200 ps to this parameter in Table 13.
50. Test conditions assume a signal transition time of \(2 \mathrm{~V} / \mathrm{ns}\).
51. Add 300 ps to this timing for 36 M devices.
52. Add \(15 \%\) to this parameter if a VCORE of 1.5 V is used.
53. This parameter assumes input clock cycle to cycle jitter of \(\pm 0 \mathrm{ps}\).
54. HSTL Support and the corresponding tests support has been removed from the device from WW1830. No other functionality is impacted with this change
}

Table 13. SDR Mode (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Description}} & \multicolumn{2}{|c|}{-200} & \multicolumn{2}{|c|}{-167} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Max & Min & Max & \\
\hline \(\mathrm{t}_{\mathrm{OHz}}{ }^{[55]}\) & \multicolumn{2}{|l|}{\(\overline{\mathrm{OE}}\) to high Z} & 1.00 & \(4.40^{[56,57]}\) & 1.00 & \(5.00{ }^{[56,57]}\) & ns \\
\hline \({ }^{\text {c }}\) CD1 & \multicolumn{2}{|l|}{\(C\) rise to \(D Q\) valid for flow through mode (LowSPD = 0)} & - & \(9.00^{[56,57]}\) & - & \(11.00^{[56,57]}\) & ns \\
\hline \(\mathrm{t}_{\text {CA1 }}\) & \multicolumn{2}{|l|}{C rise to address readback valid for flow through mode} & - & \(9.00{ }^{[57]}\) & - & \(11.00^{[57]}\) & ns \\
\hline \({ }^{\text {t }}\) A2 & \multicolumn{2}{|l|}{C rise to address readback valid for pipelined mode} & - & \(5.00{ }^{[57]}\) & - & \(6.00{ }^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\mathrm{DC}}{ }^{[58]}\) & \multicolumn{2}{|l|}{DQ output hold after C rise} & 1.00 & - & 1.00 & - & ns \\
\hline \(\mathrm{t}_{\text {JIT }}\) & \multicolumn{2}{|l|}{Clock input cycle to cycle jitter} & - & \(\pm 200\) & - & \(\pm 200\) & ps \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\text {CQHQV }}{ }^{[58]}\)} & \multirow[t]{2}{*}{Echo clock (CQ) high to output valid} & \[
\begin{aligned}
& \text { HSTL [59] } \\
& \text { 1.8 V LVCMOS }
\end{aligned}
\] & - & \(0.70^{[56]}\) & - & \(0.80^{[56]}\) & ns \\
\hline & & \[
\begin{aligned}
& \text { 2.5 V LVCMOS } \\
& \text { 3.3 V LVTTL }
\end{aligned}
\] & - & \(0.80^{[56]}\) & - & \(0.90^{[56]}\) & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{CQHQX}}{ }^{\text {[58] }}\)} & \multirow[t]{2}{*}{Echo clock (CQ) high to output hold} & \[
\begin{aligned}
& \hline \mathrm{HSTL}^{[59]} \\
& 1.8 \mathrm{~V} \text { LVCMOS }
\end{aligned}
\] & -0.70 & - & -0.80 & - & ns \\
\hline & & \[
\begin{aligned}
& \text { 2.5 V LVCMOS } 3.3 \mathrm{~V} \\
& \text { LVTTL }
\end{aligned}
\] & -0.85 & - & -0.95 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CKHZ1}}{ }^{[55]}\) & \multicolumn{2}{|l|}{C rise to DQ output high Z in flow through mode} & 1.00 & \(9.00^{[56,57]}\) & 1.00 & \(11.00^{[56,57]}\) & ns \\
\hline \(\mathrm{t}_{\text {CKLZ1 }}{ }^{\text {[55] }}\) & \multicolumn{2}{|l|}{C rise to DQ output low \(Z\) in flow through mode} & 1.00 & - & 1.00 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{AC}}\) & \multicolumn{2}{|l|}{Address output hold after C rise} & 1.00 & - & 1.00 & - & ns \\
\hline \(\mathrm{t}_{\text {CKHZA1 }}{ }^{[55]}\) & \multicolumn{2}{|l|}{C rise to address output high Z for flow through mode} & 1.00 & \(9.00{ }^{[57]}\) & 1.00 & \(11.00^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\text {CKHZA2 }}{ }^{\text {[55] }}\) & \multicolumn{2}{|l|}{C rise to address output high Z for pipelined mode} & 1.00 & \(5.00{ }^{[57]}\) & 1.00 & \(6.00{ }^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\text {CKLZA }}{ }^{\text {[55] }}\) & \multicolumn{2}{|l|}{C rise to address output low Z} & 1.00 & - & 1.00 & - & ns \\
\hline \(\mathrm{t}_{\text {SCINT }}\) & \multicolumn{2}{|l|}{C rise to CNTINT low} & 1.00 & \(3.30^{[57]}\) & 1.00 & \(4.00^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\text {RCINT }}\) & \multicolumn{2}{|l|}{C rise to \(\overline{\text { CNTINT }}\) high} & 1.00 & \(3.30{ }^{[57]}\) & 1.00 & \(4.00{ }^{[57]}\) & ns \\
\hline \({ }^{\text {S }}\) INT & \multicolumn{2}{|l|}{C rise to \(\overline{\mathrm{INT}}\) low} & 0.50 & \(7.00{ }^{[57]}\) & 0.50 & \(8.00^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\text {RINT }}\) & \multicolumn{2}{|l|}{C rise to \(\overline{\mathrm{INT}}\) high} & 0.50 & \(7.00{ }^{[57]}\) & 0.50 & \(8.00{ }^{[57]}\) & ns \\
\hline \(\mathrm{t}_{\mathrm{BSY}}\) & \multicolumn{2}{|l|}{C rise to \(\overline{\mathrm{BUSY}}\) valid} & 1.00 & \(3.30{ }^{[57]}\) & 1.00 & \(4.00{ }^{[57]}\) & ns \\
\hline
\end{tabular}

\section*{Notes}
55. Parameters specified with the load capacitance in Figure 9 on page 24 and Figure 10 on page 24 .
56. For the \(\times 18\) devices, add 200 ps to this parameter in Table 13.
57. Add \(15 \%\) to this parameter if a VCORE of 1.5 V is used.

58 . This parameter assumes input clock cycle-to-cycle jitter of \(\pm 0 \mathrm{ps}\).
59. HSTL Support and the corresponding tests support has been removed from the device from WW1830. No other functionality is impacted with this change

Table 14. Master Reset Timing
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{-200} & \multicolumn{2}{|c|}{-167} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & \\
\hline \(\mathrm{t}_{\text {PUP }}\) & Power-up time & 1 & - & 1 & - & ms \\
\hline \(\mathrm{t}_{\mathrm{RS}}\) & Master reset pulse width & 5 & - & 5 & - & cycles \\
\hline \(\mathrm{t}_{\text {RSR }}\) & Master reset recovery time & 5 & - & 5 & - & cycles \\
\hline \(\mathrm{t}_{\text {RSF }}\) & Master reset to outputs inactive/Hi Z & - & 15 & - & 18 & ns \\
\hline \(\mathrm{t}_{\mathrm{RDV}}{ }^{[60]}\) & Master reset release to port ready & - & 1024 & - & 1024 & cycles \\
\hline \(\mathrm{t}_{\text {CORDY }}{ }^{[61]}\) & C rise to port ready & - & \(9.5{ }^{[62]}\) & - & \(11^{[62]}\) & ns \\
\hline
\end{tabular}

Table 15. JTAG Timing
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{-200} & \multicolumn{2}{|c|}{-167} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & \\
\hline \(\mathrm{f}_{\text {JTAG }}\) & JTAG TAP controller frequency & - & 20 & - & 20 & MHz \\
\hline \({ }^{\text {t }}\) (CYC & TCK cycle time & 50 & - & 50 & - & ns \\
\hline \(\mathrm{t}_{\text {TH }}\) & TCK high time & 20 & - & 20 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{TL}}\) & TCK low time & 20 & - & 20 & - & ns \\
\hline \(\mathrm{t}_{\text {TMSS }}\) & TMS setup to TCK rise & 10 & - & 10 & - & ns \\
\hline \(\mathrm{t}_{\text {TMS }}\) & TMS hold to TCK rise & 10 & - & 10 & - & ns \\
\hline \(\mathrm{t}_{\text {TDIS }}\) & TDI setup to TCK rise & 10 & - & 10 & - & ns \\
\hline \(t_{\text {TDIH }}\) & TDI hold to TCK rise & 10 & - & 10 & - & ns \\
\hline \(\mathrm{t}_{\text {TDOV }}\) & TCK low to TDO valid & - & 10 & - & 10 & ns \\
\hline \({ }^{\text {t }}\) tDOX & TCK low to TDO invalid & 0 & - & 0 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{JXZ}}\) & TCK low to TDO high Z & - & 15 & - & 15 & ns \\
\hline \(\mathrm{t}_{\text {JZX }}\) & TCK low to TDO active & - & 15 & - & 15 & ns \\
\hline \(\mathrm{t}_{\text {JZX }}\) & TCK low to TDO active & - & 15 & - & 15 & ns \\
\hline
\end{tabular}

\section*{Notes}
60. \(\overline{\text { READY }}\) is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a \(250-\Omega\) resistor to \(V_{\text {Ss }}\).
61. Add this propagation delay after \(\mathrm{t}_{\text {RDY }}\) for all Master Reset Operations.

62 . Add \(15 \%\) to this parameter if a VCORE of 1.5 V is used.

\section*{Switching Waveforms}

Figure 12. JTAG Timing

Figure 13. Master Reset \({ }^{[63]}\)

Note
63. \(\overline{\text { READY }}\) is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a \(250-\Omega\) resistor to \(V_{\text {Ss }}\).

Figure 14. READ Cycle for Pipelined Mode

Figure 15. WRITE Cycle for Pipelined and Flow through Modes

Switching Waveforms (continued)
Figure 16. READ with Address Counter Advance for Pipelined Mode

Figure 17. READ with Address Counter Advance for Flow through Mode

CYDXXS18V18

Switching Waveforms (continued)
Figure 18. Port-to-Port WRITE-READ for Pipelined Mode

Figure 19. Chip Enable READ for Pipelined Mode

Switching Waveforms (continued)
Figure 20. OE Controlled WRITE for Pipelined Mode

Figure 21. OE Controlled WRITE for Flow through Mode

Switching Waveforms (continued)
Figure 22. Byte-Enable READ for Pipelined Mode

Switching Waveforms (continued)
Figure 23. Port-to-Port WRITE-to-READ for Flow through Mode

Switching Waveforms (continued)
Figure 24. Busy Address Readback for Pipelined and Flow through Modes, CNT/ \(\overline{\text { MSK }}=\overline{\text { RET }}=\) LOW \({ }^{[64]}\)

Figure 25. Read Cycle for Flow through Mode

Note
64. \(A_{\text {match }}\) is the matching address that is reported on the address bus of the losing port. The counter operation selected for reporting the address is "Busy Address Readback."

CYDXXS18V18

Switching Waveforms (continued)
Figure 26. READ-to-WRITE for Pipelined Mode \(\left(\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right){ }^{[65,66,67]}\)

Figure 27. READ-to-WRITE for Pipelined Mode (\(\overline{\mathrm{OE}}\) Controlled) \({ }^{[68,69]}\)

\footnotetext{
Notes
65. When \(\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\), the last read operation is enabled to complete before the DQ bus is tristated and the user is enabled to drive write data.
66. Two dummy writes are issued to accomplish bus turnaround. The third instruction is the first valid write.
67. Chip enable or all byte enables are held inactive during the two dummy writes to avoid data corruption.
68. OE is deasserted and \(\mathrm{t}_{\mathrm{OHZ}}\) enabled to elapse before the first write operation is issued.
69. Any write scheduled to complete after \(\overline{\mathrm{OE}}\) is deasserted is pre-empted.
}

Switching Waveforms (continued)
Figure 28. Read-to-Write-to-Read for Flow through Mode (\(\overline{\mathrm{OE}}=\mathrm{LOW}\))

Switching Waveforms (continued)
Figure 29. Read-to-Write-to-Read for Flow through Mode (\(\overline{\mathrm{OE}}\) Controlled)

Switching Waveforms (continued)
Figure 30. \(\overline{\text { BUSY }}\) Timing, WRITE-WRITE Collision for Pipelined and Flow through Modes, Clock Timing Violates \(\mathrm{t}_{\mathrm{Ccs}}\). (Flag Both Ports)

Figure 31,' \(\overline{\text { BUSY }}\) Timing, WRITE-WRITE C'ollision for Pipélined and Flow through Modes; Clock Timing Meets tccs. Losing Port

Switching Waveforms (continued)
Figure 32. Read with Echo Clock for Pipelined Mode (CQEN = HIGH)

Switching Waveforms (continued)
Figure 33. Mailbox Interrupt Output
 CYDXXS18V18

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Speed } \\
& (\mathrm{MHz})
\end{aligned}
\] & Ordering Code & Package Diagram & Package Type & Operating Range \\
\hline \multicolumn{5}{|l|}{512K \(\times 72\) (36-Mbit) \(1.8 \mathrm{~V} / 1.5 \mathrm{~V}\) Synchronous CYD36S72V18 Dual-Port SRAM} \\
\hline 200 & CYD36S72V18-200BGXC & 001-07825 & 484-ball Ball Grid Array \(27 \mathrm{~mm} \times 27 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Commercial \\
\hline \multicolumn{5}{|l|}{256K \(\times 72\) (18-Mbit) \(1.8 \mathrm{~V} / 1.5 \mathrm{~V}\) Synchronous CYD18S72V18 Dual-Port SRAM} \\
\hline 200 & CYD18S72V18-200BGXI & 51-85218 & 484-ball Ball Grid Array \(23 \mathrm{~mm} \times 23 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline 200 & CYD18S72V18-200BGI & 51-85218 & 484-ball Ball Grid Array \(23 \mathrm{~mm} \times 23 \mathrm{~mm}\) with 1.0 mm pitch & Industrial \\
\hline 167 & CYD18S72V18-167BGI & 51-85218 & 484-ball Ball Grid Array \(23 \mathrm{~mm} \times 23 \mathrm{~mm}\) with 1.0 mm pitch & Industrial \\
\hline \multicolumn{5}{|l|}{128K \(\times 72\) (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S72V18 Dual-Port SRAM} \\
\hline 167 & CYD09S72V18-167BBXC & 51-85218 & 484-ball Ball Grid Array \(23 \mathrm{~mm} \times 23 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Commercial \\
\hline \multicolumn{5}{|l|}{1024K \(\times 36\) (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S36V18 Dual-Port SRAM} \\
\hline 167 & CYD36S36V18-167BGXI & 001-07825 & 484-ball Ball Grid Array \(27 \mathrm{~mm} \times 27 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline \multicolumn{5}{|l|}{512K \(\times 36\) (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S36V18 Dual-Port SRAM} \\
\hline 200 & CYD18S36V18-200BBAXI & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline 167 & CYD18S36V18-167BBAI & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch & Industrial \\
\hline \multicolumn{5}{|l|}{256K \(\times 36\) (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S36V18 Dual-Port SRAM} \\
\hline 200 & CYD09S36V18-200BBXI & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline 167 & CYD09S36V18-167BBXC & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Commercial \\
\hline
\end{tabular}

64K \(\times 36\) (2-Mbit) 1.8 V or 1.5 V Synchronous CYD02S36V18 Dual-Port SRAM
\begin{tabular}{|c|c|c|c|c|}
\hline 200 & CYD02S36V18-200BBXC & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Commercial \\
\hline \multicolumn{5}{|l|}{2048K \(\times 18\) (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S18V18 Dual-Port SRAM} \\
\hline 167 & CYD36S18V18-167BGXI & 001-07825 & 484-ball Ball Grid Array \(27 \mathrm{~mm} \times 27 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline \multicolumn{5}{|l|}{1024K \(\times 18\) (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S18V18 Dual-Port SRAM} \\
\hline 200 & CYD18S18V18-200BBAXI & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline 200 & CYD18S18V18-200BBAXC & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Commercial \\
\hline 167 & CYD18S18V18-167BBAXI & 51-85108 & 256 -ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline \multicolumn{5}{|l|}{512K \(\times 18\) (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S18V18 Dual-Port SRAM} \\
\hline 167 & CYD09S18V18-167BBXI & 51-85108 & 256-ball Ball Grid Array \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\) with 1.0 mm pitch (Pb-free) & Industrial \\
\hline
\end{tabular}

Ordering Code Definitions

\section*{Package Diagrams}

Figure 34. 256-ball FBGA (\(17 \times 17 \times 1.7 \mathrm{~mm}\)) BB256/BW0BD Package Outline, 51-85108

Package Diagrams (continued)
Figure 35. 484-ball PBGA \((23 \times 23 \times 2.03 \mathrm{~mm})\) BY484 Package Outline, \(51-85218\)

Package Diagrams (continued)
Figure 36. 484-ball PBGA (\(27 \times 27 \times 2.33 \mathrm{~mm}\)) BY484S Package Outline, 001-07825

Acronyms
\begin{tabular}{|l|l|}
\hline Acronym & \multicolumn{1}{|c|}{ Description } \\
\hline BGA & Ball Grid Array \\
\hline CMOS & Complementary Metal Oxide Semiconductor \\
\hline DLL & Delay Lock Loop \\
\hline FBGA & Fine-Pitch Ball Grid Array \\
\hline HSTL & High Speed Transceiver Logic \\
\hline I/O & Input/Output \\
\hline SDR & Single Data Rate \\
\hline SRAM & Static Random Access Memory \\
\hline TCK & Test Clock \\
\hline TDI & Test Data-In \\
\hline TDO & Test Data-Out \\
\hline TMS & Test Mode Select \\
\hline VIM & Variable Impedance Matching \\
\hline
\end{tabular}

\section*{Document History Page}

Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FulIFlex \({ }^{\text {TM }}\) Synchronous SDR Dual-Port SRAM Document Number: 38-06082
\begin{tabular}{|c|c|c|c|c|}
\hline Rev. & ECN No. & Orig. of Change & Submission Date & Description of Change \\
\hline ** & 302411 & YDT & See ECN & New data sheet. \\
\hline *A & 334036 & YDT & See ECN & Corrected typo on page 1 Reproduced PDF file to fix formatting errors \\
\hline *B & 395800 & SPN & See ECN & \begin{tabular}{l}
Added statement about no echo clocks for flow through mode Updated electrical characteristics \\
Added note 16 and 17 (1.5 V timing) \\
Added note 33 (timing for x 18 devices) \\
Updated input edge rate (note 34) \\
Updated table 5 on deterministic access control logic \\
Added description of busy readback in deterministic access control section \\
Changed dummy write descriptions \\
Updated ZQ pins connection details \\
Updated note 24, \(\overline{\mathrm{BO}}\) to \(\overline{\mathrm{BE}}\) \\
Added power supply requirements to MRST and VC_SEL \\
Added note 4 (VIM disable) \\
Updated supply voltage to ground potential to 4.1 V \\
Updated parameters on table 15 \\
Updated and added parameters to table 16 \\
Updated \(x 72\) pinout to SDR only pinout \\
Updated 484 PBGA pin diagram \\
Updated the pin definition of MRST \\
Updated the pin definition of VC_SEL \\
Updated READY description to include Wired OR note \\
Updated master reset to include wired OR note for READY \\
Updated minimum \(\mathrm{V}_{\mathrm{OH}}\) value for the 1.8 V LVCMOS configuration \\
Updated electrical characteristics to include \(\mathrm{I}_{\mathrm{RH}}\) and \(\mathrm{I}_{\mathrm{OL}}\) values \\
Updated electrical characteristics to include READY \\
Added IXX3 \\
Updated maximum input capacitance \\
Added Notes 33 and 34Removed Notes 15 and 17 \\
Updated Pin Definitions for CQ0, \(\overline{\mathrm{CQO}}, \mathrm{CQ1}\), and \(\overline{\mathrm{CQ1}}\) \\
Removed -100 Speed bin from Selection Gúide \\
Changed voltage name from \(V_{D D Q}\) to \(V_{\text {DDIO }}\) \\
Changed voltage name from \(V_{D D}\) to \(V_{C O R E}\) \\
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram \\
Updated the Package Type for the CYD36S18V18 parts \\
Updated the Package Type for the CYD36S18V18 parts \\
Updated the Package Type for the CYD18S18V18 parts \\
Updated the Package Type for the CYD18S36V18 parts \\
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256 \\
Included an OE Controlled Write for Flow through Mode Switching Waveform \\
Included a Read with Echo Clock Switching Waveform \\
Updated Figure 5 and Figure 6 \\
Updated Electrical Characteristics for \(\overline{\text { READY }} V_{O H}\) and \(\overline{\text { READY }} \vee\) \\
Updated Electrical Characteristics for \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) for the -167 and -133 \\
speeds \\
Included a Unit column for Table 5 \\
Removed Switching Characteristic \(\mathrm{t}_{\mathrm{CA}}\) from chart \\
Included \(\mathrm{t}_{\mathrm{OHZ}}\) in Switching Waveform OE Controlled Write for Pipelined Mode \\
Included \(\mathrm{t}_{\mathrm{CKLz2}}\) in Waveform Read-to-Write-to-Read for Flow through Mode
\end{tabular} \\
\hline
\end{tabular}

CYDXXS18V18

Document History Page (continued)
Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FullFlex \({ }^{\text {TM }}\) Synchronous SDR Dual-Port SRAM
Document Number: \(38-06082\)
\begin{tabular}{|c|c|c|c|c|}
\hline Rev. & ECN No. & Orig. of Change & Submission Date & Description of Change \\
\hline *C & 402238 & KGH & SEE ECN & Updated AC Test Load and Waveforms Included FullFlex36 SDR 484-Ball BGA Pinout (Top View) Included FullFlex18 SDR 484-Ball BGA Pinout (Top View) Included Timing Parameter \(\mathrm{t}_{\mathrm{CORDP}}\) \\
\hline *D & 458131 & YDT & SEE ECN & \begin{tabular}{l}
Changed ordering information with Pb -free part numbers \\
Removed VC_SEL \\
Added IO and core voltage adders \\
Removed references to bin drop for LVTTL/2.5 V LVCMOS and 1.5 V core modes \\
Updated Cin and Cout \\
Updated ICC, ISB1, ISB2 and ISB3 tables \\
Updated busy address read back timing diagram \\
Added HTSL input waveform \\
Removed HSTL (AC) from DC tables \\
Added 484-ball \(27 \mathrm{~mm} \times 27 \mathrm{~mm} \times 2.33 \mathrm{~mm}\) PBGA package
\end{tabular} \\
\hline *E & 470031 & YDT & SEE ECN & \begin{tabular}{l}
Changed VOL of 1.8 V LVCMOS to 0.45 V \\
Updated tRSF \\
VREF is DNU when HSTL is not used \\
Formatted pin description table \\
Changed VDDIO pins for \(36 \mathrm{M} \times 36\) and \(36 \mathrm{M} \times 18\) pinouts \\
Changed \(36 \mathrm{M} \times 72\) JTAG IDCODE
\end{tabular} \\
\hline *F & 500001 & YDT & SEE ECN & DLL Change, added Clock Input Cycle to Cycle Jitter Modified DLL description Changed Input Capacitance Table Changed tCCS number Added note 31 \\
\hline *G & 627539 & QSL & SEE ECN & \begin{tabular}{l}
change all NC to DNU corrected switching waveform for (CQEN \(=\) High) from both Pipeline and Flow through mode to only pipeline mode \\
Modified master reset description \\
Modified switching characteristics tables, extracted signals effected by the DLL into one table and combine all other signals into one table \\
updated package name \\
Added footnote for tHD, tHAC and tSAC \\
changed note 26 description
\end{tabular} \\
\hline *H & 2505003 & \[
\begin{aligned}
& \hline \text { VKN / } \\
& \text { AESA }
\end{aligned}
\] & See ECN & \begin{tabular}{l}
Modified footnote \#1 \\
Removed 250 MHz speed bin \\
Added 2-Mbit part and it's related information \\
Changed ball name ZQ1 to DNU for 18M and lesser density devices \\
Added 256-ball (\(17 \times 17 \mathrm{~mm}\)) BGA package for 18 M \\
Made PORTSTD[1:0] left and right pins driven only by LVTTL reference level \\
For 1.8 V LVCMOS level, Changed \(\mathrm{V}_{\mathrm{IH}(\text { min }}\) from 1.26 V to 0.65 times \(\mathrm{V}_{\mathrm{DDIO}}\) and changed \(\mathrm{V}_{\text {IL(max) }}\) from 0.36 V to 0.35 times \(\mathrm{V}_{\mathrm{DDIO}}\) \\
Changed tHD, thAC specs for 36 M from \(0.6 \mathrm{~ns} / 0.7 \mathrm{~ns}\) to 0.8 ns (See footnote\# 32) \\
Updated Ordering Information table
\end{tabular} \\
\hline
\end{tabular} CYDXXS18V18

\section*{Document History Page (continued)}

Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FullFlex \({ }^{\text {TM }}\) Synchronous SDR Dual-Port SRAM
Document Number: 38-06082
\begin{tabular}{|c|c|c|c|c|}
\hline Rev. & ECN No. & Orig. of Change & Submission Date & Description of Change \\
\hline * & 2898491 & RAME & 07/01/2010 & \begin{tabular}{l}
Modified "Counter Load Operation" section on page 12 and in Table7 on page 13. \\
Corrected typo in Table 14. by making \(\overline{\text { LowSPD }}=0\) for \(\mathrm{t}_{\mathrm{CD} 1} \mathrm{spec}\) in the description. \\
Modified figure 16. on page 30. \\
Removed inactive parts from Ordering Information. \\
Updated Packaging Information. \\
Corrected "Counter Interrupt operation" Section in Page 14 of the data sheet Updated ordering information with the parts, CYD02S36V18-200BBC and CYD36S72V18-167BGI.
\end{tabular} \\
\hline *J & 2995098 & RAME & 07/28/2010 & Updated Ordering Information: Updated part numbers. Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits. \\
\hline *K & 3267210 & ADMU & 05/26/2011 & \begin{tabular}{l}
Removed information for 4Mb devices. \\
Updated Electrical Characteristics on page 21 (Removed 133 MHz speed bin). Updated Switching Characteristics on page 25 (Removed 133 MHz speed bin). Updated Ordering Information: Updated part numbers.
\end{tabular} \\
\hline *L & 3357888 & ADMU & 08/30/2011 & Updated Pin configuration Figure 1 through 5. Added Thermal Resistance. \\
\hline *M & 3349458 & ADMU & 10/28/2011 & Minor edits in Figure 5 (removed overbars in balls C5 and C12). Updated Package Diagrams. \\
\hline *N & 3845411 & ADMU & 01/29/2013 & Updated Ordering Information (Updated part numbers). Updated Package Diagrams: spec 001-07825 - Changed revision from *A to *B. \\
\hline *O & 3895845 & ADMU & 02/05/2013 & Updated Ordering Information (Updated part numbers). \\
\hline *P & 4413766 & ADMU & 06/19/2014 & Updated Package Diagrams: spec 51-85218 - Changed revision from *A to *B. Updated to new template. \\
\hline *Q & 4581625 & ADMU & 11/27/2014 & \begin{tabular}{l}
Updated Functional Description: \\
Added "For a complete list of related documentation, click here." at the end.
\end{tabular} \\
\hline *R & 5787387 & NILE & 06/27/2017 & \begin{tabular}{l}
Updated Ordering Information: \\
Updated part numbers. \\
Updated Package Diagrams: \\
spec 51-85108 - Changed revision from *l to *J. \\
spec 51-85218 - Changed revision from *B to *C. \\
spec 001-07825 - Changed revision from *B to *C. \\
Updated to new template. \\
Completing Sunset Review.
\end{tabular} \\
\hline *S & 6259481 & NILE & 07/24/2018 & Added a footnote about removal of support to HSTL signalling in these products from WW1830. \\
\hline
\end{tabular}

\section*{Sales, Solutions, and Legal Information}

\section*{Worldwide Sales and Design Support}

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

\section*{Products}

Arm \({ }^{\circledR}\) Cortex \({ }^{\circledR}\) Microcontrollers
Automotive
Clocks \& Buffers
Interface
Internet of Things
Memory
Microcontrollers
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity
cypress.com/arm cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
cypress.com/mcu
cypress.com/psoc
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless

\section*{PSoC \({ }^{\circledR}\) Solutions}

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

\section*{Cypress Developer Community}

Community | Projects | Video | Blogs | Training | Components
Technical Support
cypress.com/support

\footnotetext{
© Cypress Semiconductor Corporation, 2005-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,

 of the Software is prohibited.

 systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances

 shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
 the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
}```

[^0]: Notes
 18. Leave this ball unconnected to disable VIM.
 19. Leave this ball unconnected for CYD09S18V18.

[^1]: Note
 33. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.

[^2]: Notes
 35. $\overline{C E}$ is internal signal. $\overline{C E}=L O W$ if $\overline{C E}_{0}=L O W$ and $C E_{1}=H I G H$. For a single read operation, $\overline{C E}$ only needs to be asserted once at the rising edge of the C and is deasserted after that. Data is out after the following C edge and is tri-stated after the next C edge.
 36. $\overline{\mathrm{OE}}$ is "Don't Care" for mailbox operation.
 37. At least one of $\overline{\mathrm{BE}}, \overline{\mathrm{BE} 1}, \overline{\mathrm{BE} 2}, \overline{\mathrm{BE}}, \overline{\mathrm{BE}}, \overline{\mathrm{BE}}, \overline{\mathrm{BE}}$, or $\overline{\mathrm{BE7}}$ must be LOW.
 38. The " X " in this diagram represents the counter's upper bits.
 39. "X" = Don't Care, "H" = HIGH, "L" = LOW.
 40. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits. The CYD02S36V18 has 16 address bits.

