

4-Mbit (512K x 8) MoBL® Static RAM

Features

· Temperature Ranges

- Industrial: -40°C to 85°C

- Automotive-A: -40°C to 85°C

· Very high speed: 55 ns

- Wide voltage range: 2.20V - 3.60V

 Pin-compatible with CY62148CV25, CY62148CV30 and CY62148CV33

· Ultra low active power

- Typical active current: 1.5 mA @ f = 1 MHz

— Typical active current: 8 mA @ f = f_{max}(55-ns speed)

· Ultra low standby power

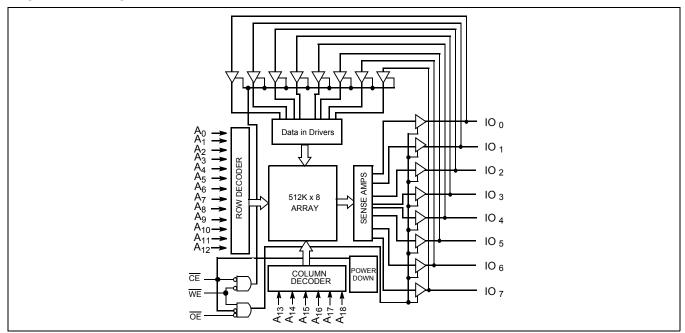
• Easy memory expansion with \overline{CE} , and \overline{OE} features

· Automatic power-down when deselected

· CMOS for optimum speed/power

 Available in Pb-free and non Pb-free 36-ball VFBGA, Pb-free 32-pin TSOPII and 32-pin SOIC packages

Functional Description[1]


The CY62148DV30 is a high-performance CMOS static RAM organized as 512K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life $^{\text{TM}}$ (MoBL $^{\text{(B)}}$) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption when deselected $(\overline{\text{CE}}$ HIGH).The eight input and output pins (IO $_{0}$ through IO $_{7}$) are placed in a high-impedance state when:

- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- When the write operation is active(\(\overline{CE}\) LOW and \(\overline{WE}\) LOW)

Write to the device by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight IO pins (IO₀ through IO₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Read from the device by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the IO pins.

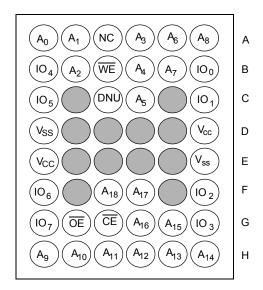
Logic Block Diagram

Note:

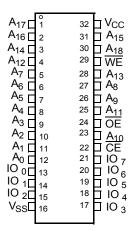
1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05341 Rev. *D

198 Champion Court •


San Jose, CA 95134-1709 •

-1709 • 408-943-2600 Revised January 25, 2007



Pin Configuration^[2, 3]

36-ball VFBGA Pinout Top View

32-pin SOIC / TSOP II Pinout Top View

Product Portfolio

								Power	Dissipat	tion	
						0	perating	g I _{CC} (m/	A)		
		V _C	_C Range	(V)	Speed	f = 1	MHz	f = f	max	Standby	I _{SB2} (μ A)
Product	Range	Min	Typ ^[4]	Max		Typ ^[4]	Max	Typ ^[4]	Max	Typ ^[4]	Max
CY62148DV30L	Industrial	2.2	3.0	3.6	55	1.5	3	8	15	2	12
CY62148DV30LL	Industrial				55	1.5	3	8	10	2	8
CY62148DV30LL	Industrial				70	1.5	3	8	10	2	8
CY62148DV30LL	Automotive-A				70	1.5	3	8	10	2	8

Notes

- 2. NC pins are not connected on the die.
- 3. $DN\dot{U}$ pins have to be left floating or tied to Vss to ensure proper application.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.

[+] Feedback

Maximum Ratings

(Exceeding maximum ratings may impair the useful life of the device. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential –0.3V to V_{CC(max)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[5,\ 6]}$ -0.3V to $V_{CC(max)}$ + 0.3V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

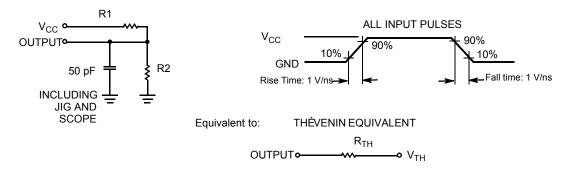
Product	Range	Ambient Temperature	V cc ^[7]
CY62148DV30L	Industrial	–40°C to +85°C	2.2V to
CY62148DV30LL			3.6V
CY62148DV30LL	Automotive-A	–40°C to +85°C	

DC Input Voltage^[5, 6]-0.3V to $V_{CC(max)}$ + 0.3V **Electrical Characteristics** Over the Operating Range

							55 ns			70 ns		
Parameter	Description		Test Conditions			Min	Typ ^[4]	Max	Min	Typ ^[4]	Max	Unit
V _{OH}	Output HIGH	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.20V			2.0			2.0			V
	Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.70V			2.4			2.4			V
V _{OL}	Output LOW	I _{OL} = 0.1 mA	V _{CC} = 2.20V					0.4			0.4	V
	Voltage	I _{OL} = 2.1 mA						0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2	.7V			1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.	6V			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	٧
V _{IL}	Input LOW	$V_{CC} = 2.2V \text{ to } 2$.7V			-0.3		0.6	-0.3		0.6	V
	Voltage	V_{CC} = 2.7V to 3.	6V			-0.3		0.8	-0.3		8.0	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$				-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC}	, Output Disabled			-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$	Ind'l	L		8	15				mA
	Supply Current		$I_{OUT} = 0 \text{ mA}$	Ind'l	LL		8	10		8	10	mA
			CMOS levels	Auto-A	LL					8	10	mA
		f = 1 MHz		Ind'l	L		1.5	3				mA
				Ind'l	LL		1.5	3		1.5	3	mA
				Auto-A	LL					1.5	3	mA
I _{SB1}	Automatic CE	$\overline{CE} \ge V_{CC} - 0.2V_{CC}$		Ind'l	L		2	12				μΑ
	Power-down Current —	V _{IN} ≥V _{CC} -0.2V,		Ind'l	LL		2	8		2	8	
	CMOS Inputs	$f = f_{max}$ (Addres $f = 0$ (OE, and \overline{V}	s and Data Only), $\overline{\text{VE}}$), V_{CC} =3.60V	Auto-A	LL					2	8	
I _{SB2}	Automatic CE	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2$		Ind'l	L		2	12				μΑ
	Power-down Current —	$V_{IN} \ge V_{CC} - 0.2$	***	Ind'l	LL		2	8		2	8	
	CMOS Inputs	$f = 0, V_{CC} = 3.60$	0V	Auto-A	LL					2	8	

- 5. V_{IL(min)} = -2.0V for pulse durations less than 20 ns.
 6. V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 7. Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.

Document #: 38-05341 Rev. *D

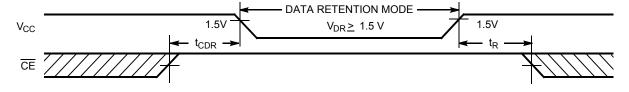

Capacitance (for all packages)[8]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output Capacitance		10	pF

Thermal Resistance

Parameter	Description	Test Conditions	VFBGA	TSOP II	SOIC	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit	72	75.13	55	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	board	8.86	8.95	22	°C/W

AC Test Loads and Waveforms



Parameters	2.5V (2.2V – 2.7V)	3.0V (2.7V – 3.6V)	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Min	Typ ^[4]	Max	Unit
V_{DR}	V _{CC} for Data Retention				1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	Ind'l	L			9	μΑ
		$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	Ind'I/Auto-A	LL			6	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time				0			ns
t _R ^[9]	Operation Recovery Time				t _{RC}			ns

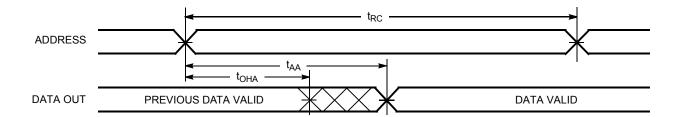
Data Retention Waveform

Notes:

- 8. Tested initially and after any design or process changes that may affect these parameters.
- 9. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Document #: 38-05341 Rev. *D

Page 4 of 10



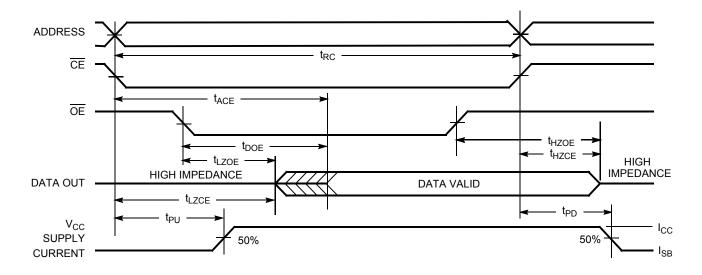
Switching Characteristics (Over the Operating Range)^[10]

		55	ns	70			
Parameter	meter Description		Max	Min	Max	Unit	
Read Cycle	,			l .		- I	
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	10		10		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low Z ^[11]	5		5		ns	
t _{HZOE}	OE HIGH to High Z ^[11,12]		20		25	ns	
t _{LZCE}	CE LOW to Low Z ^[11]	10		10		ns	
t _{HZCE}	CE HIGH to High Z ^[11, 12]		20		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-up		55		70	ns	
Write Cycle ^[13]		•	•	•	•	1	
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	40		45		ns	
t _{AW}	Address Set-up to Write End	40		45		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		45		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High Z ^[11, 12]		20		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[11]	10		10		ns	

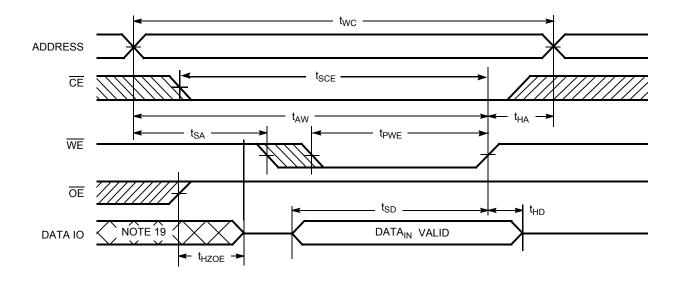
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[14, 15]

- 10. Test Conditions for all parameters other than three-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" on page 4.


 11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} for any given device.
- 12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
- 13. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.
- 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 15. WE is HIGH for read cycle.

Document #: 38-05341 Rev. *D



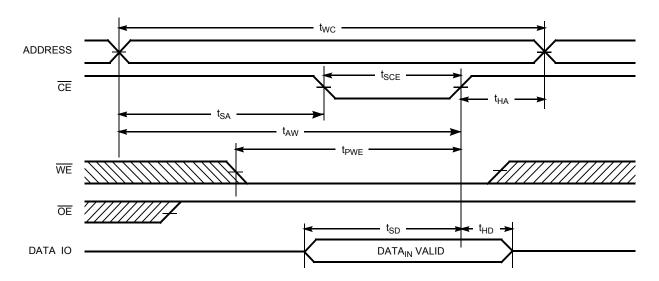
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)[15, 16]

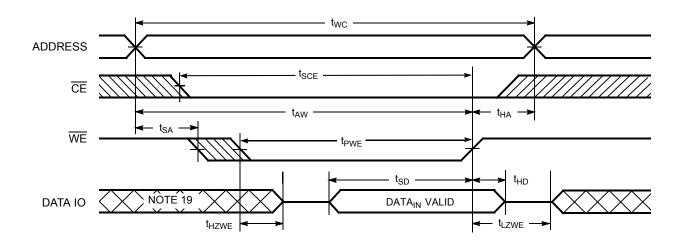
Write Cycle No. 1 (WE Controlled)^[17, 18]

- 16. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 17. Data IO is high impedance if $\overline{OE} = V_{IH}$.

 18. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.
- 19. During this period, the IOs are in output state and input signals should not be applied.


Document #: 38-05341 Rev. *D

[+] Feedback



Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[17, 18]

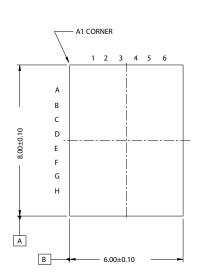
Write Cycle No. 3 (WE Controlled, OE LOW)[18]

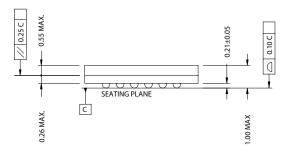
Truth Table

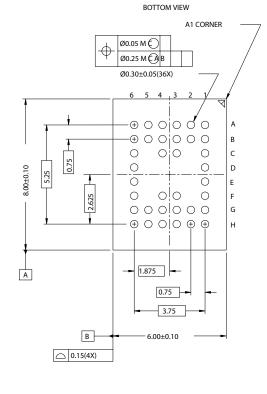
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out (IO ₀ -IO ₇)	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (Icc)
L	L	Х	Data in (IO ₀ -IO ₇)	Write	Active (Icc)

Document #: 38-05341 Rev. *D Page 7 of 10

Ordering Information

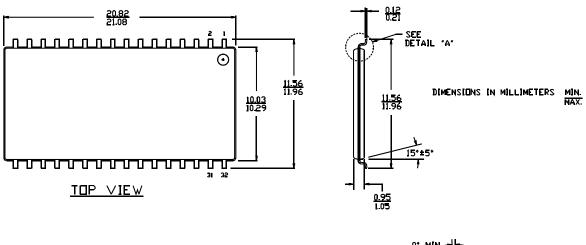

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62148DV30LL-55BVI	51-85149	36-ball VFBGA (6 × 8 × 1 mm)	Industrial
	CY62148DV30LL-55BVXI		36-ball VFBGA (6 × 8 × 1 mm) (Pb-free)	
	CY62148DV30L-55ZSXI	51-85095	32-pin TSOP II (Pb-free)	
	CY62148DV30LL-55ZSXI			
	CY62148DV30LL-55SXI	51-85081	32-pin SOIC (Pb-free)	
70	CY62148DV30LL-70ZSXI	51-85095	32-pin TSOP II (Pb-free)	Industrial
	CY62148DV30LL-70ZSXA	51-85095	32-pin TSOP II (Pb-free)	Automotive-A


Contact your local Cypress sales representative for availability of these parts


TOP VIEW

Package Diagrams

Figure 1. 36-ball VFBGA (6 x 8 x 1 mm), 51-85149


51-85149-*C

Document #: 38-05341 Rev. *D

Package Diagrams (continued)

Figure 2. 32-pin TSOP II, 51-85095

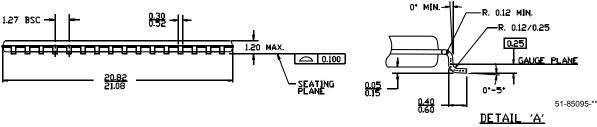
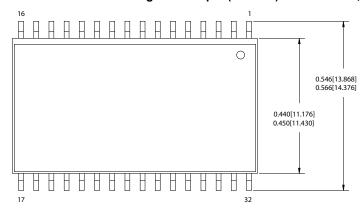
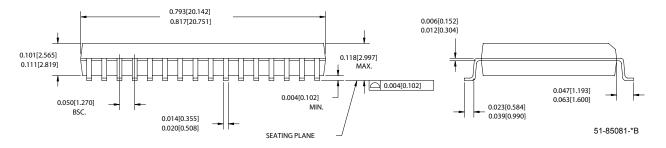




Figure 3. 32-pin (450 MIL) Molded SOIC, 51-85081

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05341 Rev. *D

Page 9 of 10

Document History Page

REV.	ECN NO.	Issue Date				
**	127480	06/17/03	HRT	Created new data sheet		
*A	131041	01/23/04	CBD	Changed from Advance to Preliminary		
*B	222180	See ECN	AJU	Changed from Preliminary to Final Added 70 ns speed bin Modified footnote #6 and #12 Removed MAX value for V _{DR} on "Data Retention Characteristics" table Modified input and output capacitance values Added Pb-free ordering information Removed 32-pin STSOP package		
*C	498575	See ECN	NXR	Added Automotive-A Operating Range Removed SOIC package from Product Offering Updated Ordering Information Table		
*D	729917	See ECN	VKN	Added SOIC package and its related information Updated Ordering Information Table		

Document #: 38-05341 Rev. *D Page 10 of 10