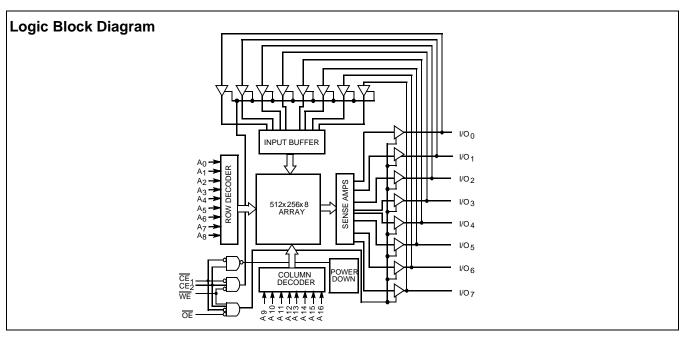


1-Mbit (128K x 8) Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive: –40°C to 125°C
- 4.5V-5.5V operation
- CMOS for optimum speed/power
- Low active power (70 ns, LL version, Commercial, Industrial)
 — 82.5 mW (max.) (15 mA)
- Low standby power (70 ns, LL version, Commercial, Industrial) — 110 μW (max.) (15 μA)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options

Functional Description^[1]


The CY62128B is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (\overline{CE}_2), an active LOW Output Enable (\overline{OE}), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable One (CE₁) and Write Enable (WE) inputs LOW and Chip Enable Two (CE₂) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable One ($\overline{CE_1}$) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable Two (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is des<u>elected</u> (CE₁ HIGH or CE₂ LOW), the <u>outputs</u> are disabled (\overline{OE} HIGH), or during a write operation (CE₁ LOW, CE₂ HIGH, and WE LOW).

The CY62128B is available in a standard 450-mil-wide SOIC, 32-pin TSOP type I and STSOP packages.

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05300 Rev. *C San Jose, CA 95134 • 408-943-2600 Revised March 7, 2005

Product Portfolio

						Power Dissipation				
V _{CC} Range (V)		Speed	Operating, I _{CC} (mA)		Standby, I _{SB2} (µA)					
Product		Min.	Typ. ^[2]	Max.	(ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.	
CY62128BLL	Industrial	4.5	5.0	5.5	55	7.5	20	2.5	15	
	Industrial				70	6	15	2.5	15	
	Automotive				70	6	25	2.5	25	

Pin Configurations

Pin Definitions

Input	A ₀ -A ₁₆ . Address Inputs
Input/Output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation
Input/Control	WE. Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
Input/Control	CE ₁ . Chip Enable 1, Active LOW.
Input/Control	CE ₂ . Chip Enable 2, Active HIGH.
Input/Control	OE . Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins
Ground	GND. Ground for the device
Power Supply	V _{CC} . Power supply for the device

Note:

2. Typical values are included for reference only and are not tested or guaranteed. Typical values are an average of the distribution across normal production variations as measured at V_{CC} = 5.0V, T_A = 25 °C, and t_{AA} = 70 ns.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C	;
Ambient Temperature with	
Power Applied–55°C to +125°C	
Supply Voltage on V_{CC} to Relative GND ^[3] –0.5V to +7.0V	1
DC Voltage Applied to Outputs	
DC Voltage Applied to Outputs in High-Z State ^[3] 0.5V to V _{CC} + 0.5V	1
DC Input Voltage ^[3] –0.5V to V_{CC} + 0.5V	'

Electrical Characteristics Over the Operating Range

Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V

Latch-up Current.....> 200 mA

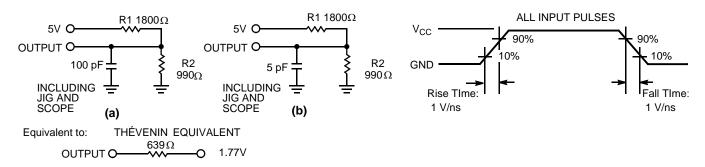
Operating Range

Range	Ambient Temperature (T _A) ^[4]	v _{cc}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	–40°C to +85°C	$5V\pm10\%$
Automotive	–40°C to +125°C	5V ± 10%

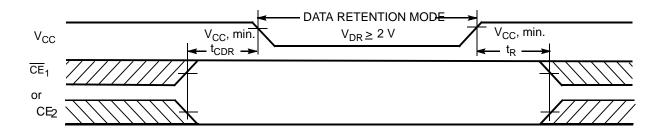
		Test Conditions		CY62128B-55			CY62128B-70			
Parameter	Description			Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	1.0 mA	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.$.1 mA			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3	2.2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[3]			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1		+1	-1		+1	μΑ
			Automotive				-10		+10	μΑ
I _{OZ}	Output Leakage	$GND \le V_I \le V_{CC}$,		-1		+1	-1		+1	μΑ
	Current	Output Disabled	Automotive				-10		+10	μΑ
I _{OS}	Output Short Circuit Current ^[5]	V _{CC} = Max., V _{OUT} =	V _{CC} = Max., V _{OUT} = GND			-300			-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA,	Industrial, Commercial		7.5	20		6	15	mA
		$f = f_{MAX} = 1/t_{RC}$	Automotive					6	25	mA
I _{SB1}	Automatic CE Power-down Current	$\frac{Ma}{CE_{1}} \ge V_{IH}$	Industrial Commercial		0.1	2		0.1	1	mA
	—TTL Inputs	$ \begin{array}{l} \text{ or } \dot{CE}_2 \leq \dot{V}_{IL}, \\ V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, f = f_{MAX} \end{array} $	Automotive					0.1	2	mA
I _{SB2}	Automatic CE Power-down Current	$\label{eq:constraint} \frac{Ma}{CE} \text{x. } V_{CC}, \\ \overline{CE}_1 \geq V_{CC} - 0.3 \text{V}, \\ \end{array}$	Industrial Commercial		2.5	15		2.5	15	μA
	—CMOS Inputs	$\label{eq:VIN} \begin{array}{l} \text{or CE}_2 \leq 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V}, \\ \text{or V}_{\text{IN}} \leq 0.3\text{V}, \ \text{f} = 0 \end{array}$	Automotive					2.5	25	μA

Notes:

 V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. T_A is the "Instant On" case temperature. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. 3. 4. 5.


Thermal Resistance^[6]

Parameter	Description	Test Conditions	32 SOIC	32 TSOP	32 STSOP	32 RTSOP	Unit
Θ_{JA}	(Junction to Ambient)	Test conditions follow standard test methods and procedures for	66.17	97.44	105.14	97.44	°C/W
Θ^{JC}		measuring thermal impedance, per EIA / JESD51.	30.87	26.05	14.09	26.05	°C/W


Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

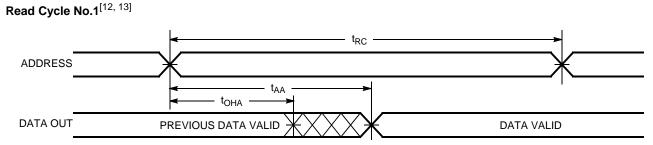
AC Test Loads and Waveforms

Data Retention Waveform

Data Retention Characteristics (Over the Operating Range for "LL" version only)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current	$\begin{array}{l} V_{CC}=V_{DR}=2.0V, \ \overline{CE}_1\geqV_{CC}-0.3V,\\ \text{or }CE_2\leq0.3V, \ V_{IN}\geqV_{CC}-0.3V \ \text{or}, \ V_{IN}\leq\\ 0.3V \end{array}$		1.5	15	μΑ
t _{CDR}	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time		70			ns

Note:


6. Tested initially and after any design or process changes that may affect these parameters.

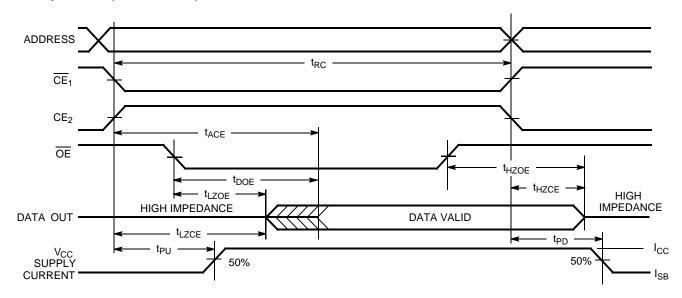
Switching Characteristics^[7] Over the Operating Range

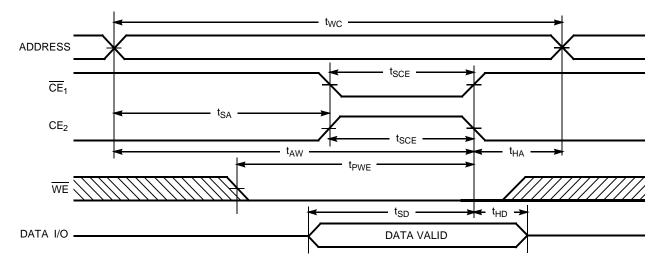
		6212	8B-55	62128B-70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE		I	1	•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	\overline{CE}_1 LOW to Data Valid, CE_2 HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 9]		20		25	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[9]	5		5		ns
t _{HZCE}	\overline{CE}_1 HIGH to High Z, CE_2 LOW to High $Z^{[8, 9]}$		20		25	ns
t _{PU}	CE ₁ LOW to Power-up, CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	\overline{CE}_1 HIGH to Power-down, CE_2 LOW to Power-down		55		70	ns
WRITE CYCLE	[10]					
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[9]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		20		25	ns

Switching Waveforms

Notes:

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance. 7.
- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 8.
- 9.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{LZCE} is less than t_{LZCE} is l 10. the write.

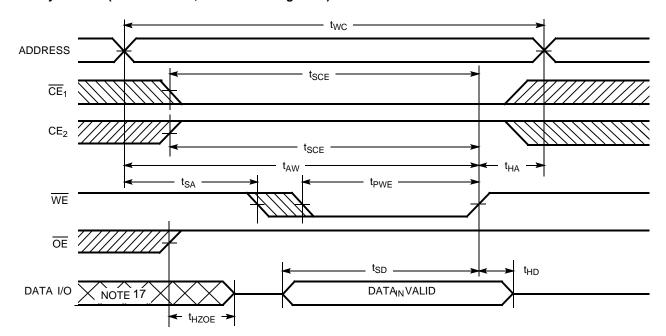

11. No input may exceed $V_{CC} + 0.5V_{...}$ 12. <u>Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.</u> 13. WE is HIGH for read cycle.


CY62128B **MoBL**[®]

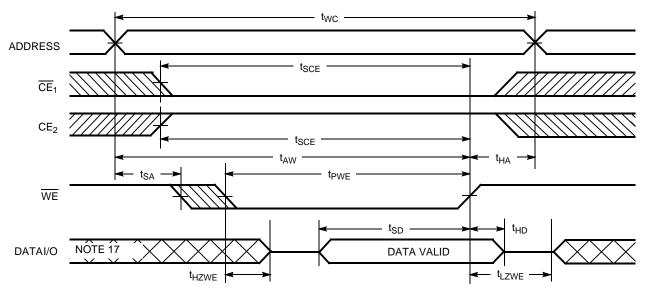
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)^[13, 14]

Write Cycle No. 1 (\overline{CE}_1 or CE_2 Controlled)^[15, 16]


Notes:

14. Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.
15. Data I/O is high impedance if OE = V_{IH}.
16. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

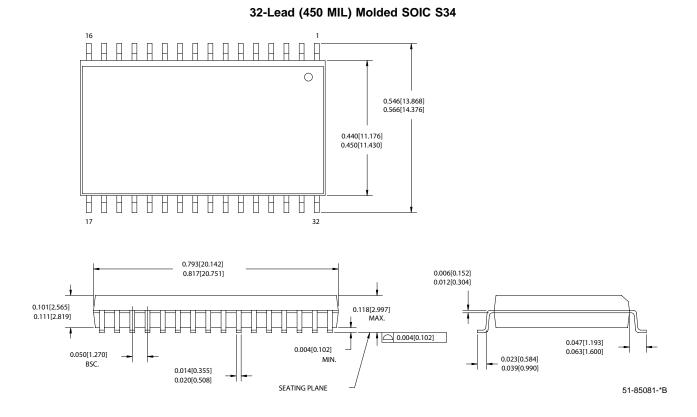
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)^[15, 16]

Write Cycle No.3 (WE Controlled, OE LOW)^[15, 16]

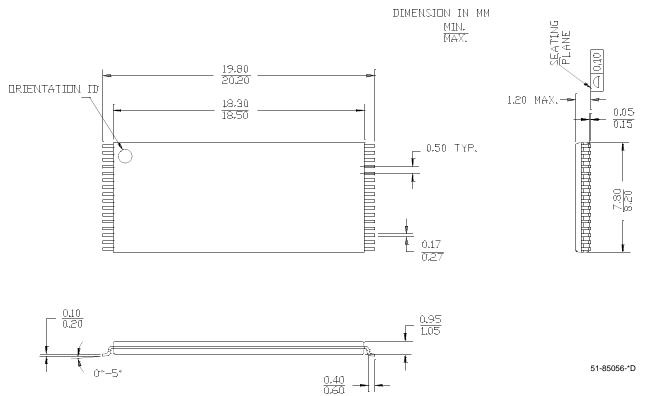
Note:

17. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

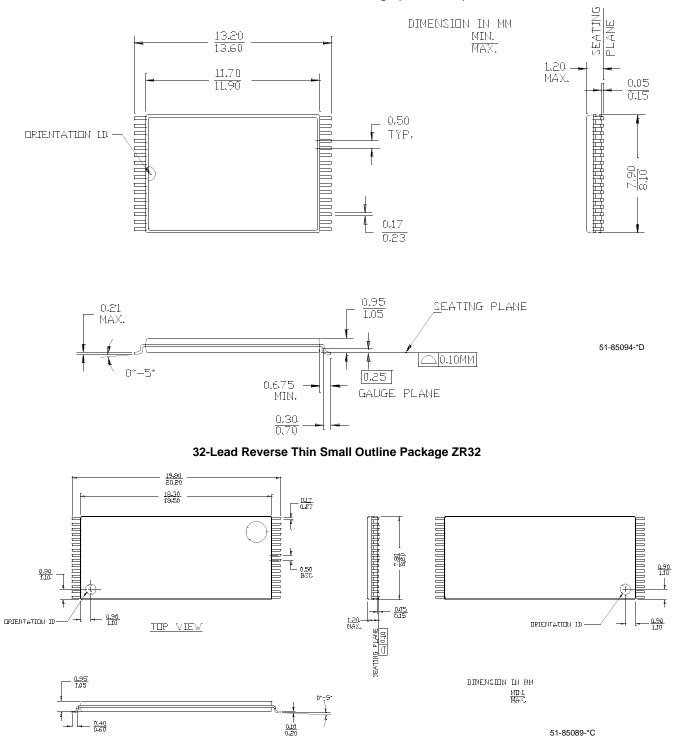

CE ₁	CE ₂	OE	WE	1/0 ₀ -1/0 ₇	Mode	Power
н	Х	Х	Х	High Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-down	Standby (I _{SB})
L	н	L	Н	Data Out	Read	Active (I _{CC})
L	н	Х	L	Data In	Write	Active (I _{CC})
L	н	н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62128BLL-55SI	S34	32-Lead 450-Mil SOIC	Industrial
	CY62128BLL-55SXI	S34	32-Lead 450-Mil SOIC (Pb-Free)	Industrial
	CY62128BLL-55SC	S34	32-Lead 450-Mil SOIC	Commercial
	CY62128BLL-55SXC	S34	32-Lead 450-Mil SOIC (Pb-Free)	Commercial
	CY62128BLL-55ZI	Z32	32-Lead TSOP Type I	Industrial
	CY62128BLL-55ZXI	Z32	32-Lead TSOP Type I (Pb-Free)	Industrial
	CY62128BLL-55ZAI	ZA32	32-Lead STSOP Type I	Industrial
	CY62128BLL-55ZAXI	ZA32	32-Lead STSOP Type I (Pb-Free)	Industrial
	CY62128BLL-55ZRI	ZR32	32-Lead Reverse TSOP Type I	Industrial
70	CY62128BLL-70SI	S34	32-Lead 450-Mil SOIC I	Industrial
	CY62128BLL-70SXI	S34	32-Lead 450-Mil SOIC I (Pb-Free)	Industrial
	CY62128BLL-70SC	S34	32-Lead 450-Mil SOIC I	Commercial
	CY62128BLL-70SXC	S34	32-Lead 450-Mil SOIC I (Pb-Free)	Commercial
	CY62128BLL-70SE	S34	32-Lead 450-Mil SOIC I	Automotive
	CY62128BLL-70SXE	S34	32-Lead 450-Mil SOIC I (Pb-Free)	Automotive
	CY62128BLL-70ZI	Z32	32-Lead TSOP Type I	Industrial
	CY62128BLL-70ZC	Z32	32-Lead TSOP Type I	Commercial
	CY62128BLL-70ZE	Z32	32-Lead TSOP Type I	Automotive
	CY62128BLL-70ZXE	Z32	32-Lead TSOP Type I (Pb-Free)	Automotive
	CY62128BLL-70ZAI	ZA32	32-Lead STSOP Type I	Industrial
	CY62128BLL-70ZAXI	ZA32	32-Lead STSOP Type I (Pb-Free)	Industrial
	CY62128BLL-70ZAE	ZA32	32-Lead STSOP Type I	Automotive
	CY62128BLL-70ZAXE	ZA32	32-Lead STSOP Type I (Pb-Free)	Automotive
	CY62128BLL-70ZRXE	ZR32	32-Lead Reverse TSOP Type I (Pb-Free)	Automotive

Package Diagrams

32-Lead Thin Small Outline Package Type I (8x20 mm) Z32



Document #: 38-05300 Rev. *C

Page 9 of 11

Package Diagrams (continued)

32-Lead Shrunk Thin Small Outline Package (8x13.4 mm) ZA32

All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-05300 Rev. *C

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY62128B MoBL [®] 1-Mbit (128K x 8) Static RAM Document Number: 38-05300				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	116566	06/20/02	DSG	Changed from Spec number: 38-00524 to 38-05300
*A	126601	06/09/03	JUI	Changed CE to \overline{CE}_1 and added $\overline{CE}_2 \le 0.3V$ in Data Retention Characteristics table Removed these part numbers from Ordering Information table: CY62128BLL-55ZC, CY62128BLL-55ZAC, CY62128BLL-55ZRC, CY62128BLL-70ZAC, CY62128BLL-70ZRI, CY62128BLL-70ZRC
*В	239134	See ECN	AJU	Added Thermal Resistance table Added Automotive product information
*C	334398	See ECN	SYT	Added Pb-Free part numbers to the Ordering info on Page #8