

Ultralow Noise, LDO XFET Voltage Reference with Current Sink and Source

Enhanced Product ADR441-EP

FEATURES

Ultralow voltage noise (0.1 Hz to 10 Hz): 1.2 μV p-p Superb temperature drift: 5 ppm/°C Low dropout operation (supply voltage headroom): 500 mV Supply voltage operating range: 3 V to 18 V High output source and sink current +10 mA and –5 mA, respectively

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)

Military temperature range (-55°C to +125°C)
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

APPLICATIONS

Precision data acquisition systems
High resolution data converters
Battery-powered instrumentation
Precision instruments
Military communication
Unmanned systems
Avionics

GENERAL DESCRIPTION

The ADR441-EP¹ is a XFET® voltage reference featuring ultralow noise, high accuracy, and low temperature drift performance. Using Analog Devices, Inc., temperature drift curvature correction and extra implanted junction FET (XFET) technology, voltage change vs. temperature nonlinearity in the ADR441-EP is greatly minimized.

The XFET reference offers better noise performance than buried Zener references, and the XFET reference operates off low supply voltage headroom (500 mV). This combination of features makes the ADR441-EP ideally suited for precision signal conversion applications in high end data acquisition systems, military communication, and avionics applications.

TYPICAL APPLICATION CIRCUIT

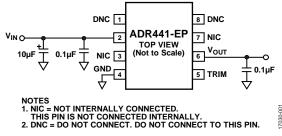


Figure 1.

The ADR441-EP has the capability to source up to +10 mA of output current and sink up to -5 mA. The device also comes with a trim terminal to adjust the output voltage over a 0.5% range without compromising performance.

The ADR441-EP is available in an 8-lead, narrow SOIC package. The ADR441-EP is specified over the military temperature range of -55°C to +125°C. Additional application and technical information can be found in the ADR441 data sheet.

Rev. 0

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

¹ Protected by U.S. Patent Number 5,838,192.

ADR441-EP Enhanced Product

TABLE OF CONTENTS

reatures	. I
Enhanced Product Features	. 1
Applications	
Typical Application Circuit	
General Description	
Revision History	
Specifications	
Electrical Characteristics	

Absolute Maximum Ratings	
Thermal Resistance	
ESD Caution	4
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	e
Outline Dimensions	
Ordering Guide	8

REVISION HISTORY

7/2018—Revision 0: Initial Version

Enhanced Product ADR441-EP

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{IN} = 3 V to 18 V, T_A = 25°C, and input capacitance (C_{IN}) = output capacitance (C_{OUT}) = 0.1 μ F, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	V _{OUT}		2.499	2.500	2.501	V
INITIAL ACCURACY	V _{OERR}				±1	mV
					0.04	%
TEMPERATURE DRIFT	TCV _{OUT}	-55°C < T _A < +125°C		1	5	ppm/°C
REGULATION						
Line	$\Delta V_{\text{OUT}}/\Delta V_{\text{IN}}$	-55°C < T _A < +125°C		10	20	ppm/V
Load	$\Delta V_{\text{OUT}}/\Delta I_{\text{LOAD}}$	Load current (I_{LOAD}) = 0 mA to 10 mA, V_{IN} = 4 V,				
		−55°C < T _A < +125°C	-50		+50	ppm/mA
	$\Delta V_{\text{OUT}}/\Delta I_{\text{LOAD}}$	$I_{LOAD} = 0 \text{ mA to } -5 \text{ mA}, V_{IN} = 4 \text{ V}, -55 ^{\circ}\text{C} < T_A < +125 ^{\circ}\text{C}$	-50		+50	ppm/mA
OUTPUT CURRENT CAPACITY	I _{LOAD}					
Sourcing				10		mA
Sinking				- 5		mA
QUIESCENT CURRENT	I _{IN}	No load, -55°C < T _A < +125°C		3	3.75	mA
VOLTAGE NOISE	e _N p-p	0.1 Hz to 10 Hz		1.2		μV p-p
Density	e _N	1 kHz		48		nV/√Hz
TURN-ON SETTLING TIME	t _R			10		μs
LONG-TERM STABILITY ¹	ΔV _{OUT}	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	V _{OUT_HYS}			70		ppm
RIPPLE REJECTION RATIO	RRR	Input frequency (f _{IN}) = 1 kHz		-80		dB
SHORT CIRCUIT TO GND	Isc			27		mA
SUPPLY VOLTAGE						
Operating Range	V _{IN}		3		18	V
Headroom	$V_{\text{IN}} - V_{\text{OUT}}$		500			mV

¹ The long-term stability specification is noncumulative. The drift in the subsequent 1000 hour period is significantly lower than in the first 1000 hour period.

ADR441-EP Enhanced Product

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Rating
Supply Voltage	20 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−55°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature, Soldering (60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 θ_{JC} is the junction to case thermal resistance.

Table 3. Thermal Resistance

Package Type ¹	$\boldsymbol{\theta}_{JA}$	Ө лс	Unit	
R-8	130	43	°C/W	

¹ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD-51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Enhanced Product ADR441-EP

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

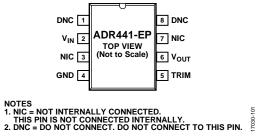


Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8	DNC	Do Not Connect. Do not connect to these pins.
2	V _{IN}	Input Voltage Connection.
3, 7	NIC	Not Internally Connected. These pins are not connected internally.
4	GND	Ground.
5	TRIM	Output Voltage Trim.
6	V _{OUT}	Output Voltage.

ADR441-EP Enhanced Product

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\rm IN}$ = 7 V, T_A = 25°C, and $C_{\rm IN}$ = $C_{\rm OUT}$ = 0.1 μF , unless otherwise noted.

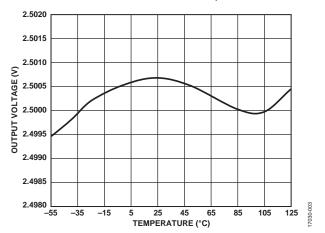


Figure 3. Output Voltage vs. Temperature

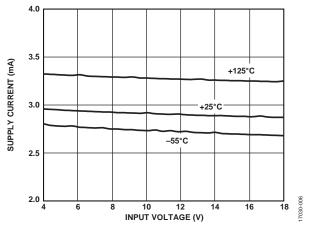


Figure 4. Supply Current vs. Input Voltage for Various Temperatures

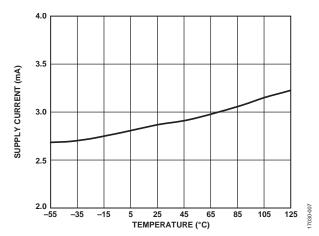


Figure 5. Supply Current vs. Temperature

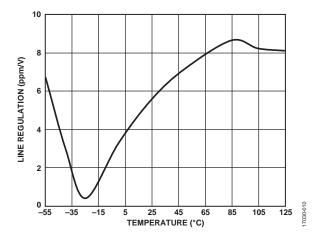


Figure 6. Line Regulation vs. Temperature

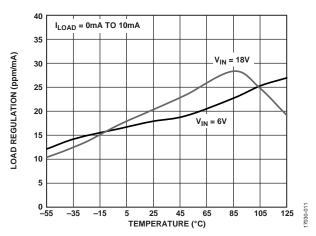


Figure 7. Load Regulation vs. Temperature for Various Input Voltages

Enhanced Product ADR441-EP

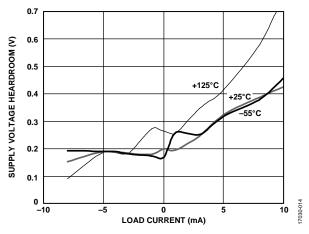


Figure 8. Supply Voltage Headroom vs. Load Current for Various Temperatures

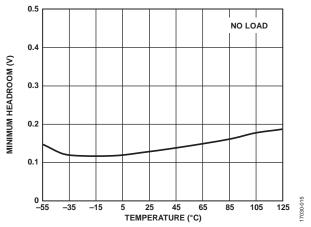
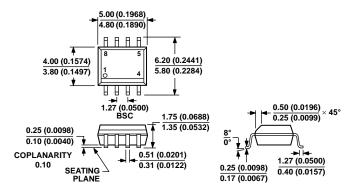



Figure 9. Minimum Headroom vs. Temperature

Enhanced Product ADR441-EP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 10. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)Dimensions shown in millimeters and (inches)

ORDERING GUIDE

		Initial Accuracy		Initial Accuracy Temperatu		Temperature			Package
Model ¹	Output Voltage (V)	±mV	%	Drift (ppm/°C)	Temperature Range	Package Description	Option		
ADR441TRZ-EP	2.500	1	0.04	5	−55°C to +125°C	8-Lead SOIC_N	R-8		
ADR441TRZ-EP-R7	2.500	1	0.04	5	−55°C to +125°C	8-Lead SOIC_N	R-8		

¹ Z = RoHS Compliant Part.

Rev. 0 | Page 8 of 8

012407-A