
RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

FEATURES

- Case A Size (.055" x .055")
- · Low ESR / ESL
- High Q
- · Low Noise
- · Capacitance Range 0.1 pF to 1000 pF
- · Extended WVDC up to 250 VDC
- · Zero TCC
- · High Self-Resonance
- · Established Reliability (QPL)

GENERAL DESCRIPTION

AVX, the industry leader, offers new improved ESR/ESL performance for the 700 A Series RF/Microwave Capacitors. The superior high self- resonance and zero TCC characteristic of this Series provide excellent performance over a broad range of RF and microwave applications requiring minimum drift. High density porcelain and ceramic constructions provide a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning and DC Blocking.

Typical circuit applications: Filters, Oscillators and Timing

PACKAGING OPTIONS

Tape & Reel

Vertical Orientation Tape & Reel

Cap-Pak® (100 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C			
Capacitance Range	0.1 pF to 1000 pF			
Operating Temperature	-55°C to +125°C*			
Quality Factor	Greater than 10,000 (0.1 pF to 100 pF) @ 1 MHz. Greater than 2000 (110 pF to 1000 pF) @ 1 MHz.			
Insulation Resistance (IR)	0.1 pF to 470 pF 10 ⁶ Megohms min. @ 25°C at rated WVDC 10 ⁵ Megohms min. @ 125°C at rated WVDC 510 pF to 1000 pF 10 ⁵ Megohms min. @ 25°C at rated WVDC 10 ⁴ Megohms min. @ 125°C at rated WVDC			
Working Voltage (WVDC)	See Capacitance Values table			
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds			
Aging Effects	None			
Piezoelectric Effects	None			
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater			

ENVIRONMENTAL CHARACTERISTICS

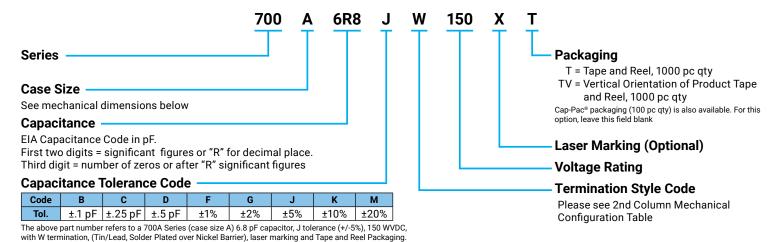
Themal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

RF/Microwave Multilayer Capacitors (MLC)

CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra ¹	ted 'DC	Cap.	Cap.	Tol.	Rat WV	ted 'DC	Cap.	Cap.	Tol.	Ra [·] WV																			
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.																		
0R1	0.1	В			2R4	2.4			_	200	20				151	150																					
0R2	0.2	ь	В		ED	2R7	2.7			ED	220	22			1GE	161	160																				
0R3	0.3	B, C		GE	3R0	3.0			GE	240	24			VOLTAGE	181	180																					
0R4	0.4	В, С		VOLTAGE	3R3	3.3			EXTENDED VOLTAGE	270	27			ΛΟ	201	200																					
0R5	0.5			707	3R6	3.6	D C		0	300	30				221	220																					
0R6	0.6							3R9	3.9	B, C, D		١٩	330	33			250	241	240																		
0R7	0.7				IDE	4R3	4.3			\Q	360	36			250	271	270		150																		
0R8	8.0				EXTENDED	4R7	4.7			E	390	39			Q	301	300																				
0R9	0.9		150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150			EX.	5R1	5.1			Ĭ.	430	43			EXTENDED	331	330		130	
1R0	1.0																				-	5R6	5.6				470	47	г о		EN	361	360	г о			
1R1	1.1																			250	6R2	6.2		150	250	510	51	F, G, J, K,	150	X	391	390	F, G, J, K,		N/A		
1R2	1.2	B, C, D	В, С,				130	230	6R8	6.8	D 0	130	230	560	56	3, K,	130	7	431	430	э, к, М		IN/ A														
1R3	1.3									7R5		B, C, J, K,			620	62			7.	471	470																
1R4	1.4			Ή	8R2	8.2	Э, К, М		Ä	680	68			VOLT	511	510																					
1R5	1.5			VOLTAGE	9R1	9.1			VOLTAGE	750	75			>	561	560																					
1R6	1.6			170	100	10			170	820	82			200	621	620																					
1R7	1.7			, V	110	11			Š	910	91			EXT.	681	680																					
1R8	1.8	1.8 1.9 2.0 2.1)EI	120	12	F, G,)EI	101	100			E)	751	750																				
1R9	1.9																EXTENDED	130	13	J, K,		EXTENDED	111	110				821	820		50						
2R0	2.0			X	150	15	М		X	121	120			N/A	911	910		30																			
2R1	2.1			E.	160	16			Ē	131	130			IN/A	102	1000																					
2R2	2.2				180	18																															

vrms = 0.707 x WVDC


Special values, tolerances, higher WVDC and matching available. Please consult factory.

note: extended wvdc does not apply to cdr products.

Capacitance values in bold type indicate porcelain dielectric. All other capacitance values indicate ceramic dielectric.

All 700 A Capacitors are available laser marked with AVX's identification, capacitance code and tolerance.

HOW TO ORDER

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

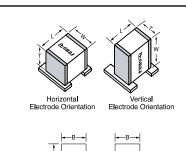
MECHANICAL CONFIGURATION

AVX Series & Case Size	AVX Term.	MIL-PRF-55681	Case Size & Type	Outline ES W/T is a Termination	Body Dimensions inches (mm)				Termination and Material
& Case Size	Code		α i ype	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials
700A	w	CDR12BP	A 🕏 Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \underline{w} \\ \to & \downarrow L & \uparrow \to \uparrow T & \downarrow \leftarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)		010, 010, 005	Tin/ Lead, Solder Plated over Nickel Barrier Termination
700A	Р	CDR12BP	A 😭 Pellet	→ L ← → T ←	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057		Heavy Tin/ Lead Coated, over Nickel Barrier Termination
700A	Т	N/A	A Solderable Nickel Barrier	Y→ ← ↓ <u>w</u>	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	(1.45) max.	.010+.010005 (0.25+0.25 -0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination
700A	CA	CDR11BP	A 🕏 Gold Chip	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination

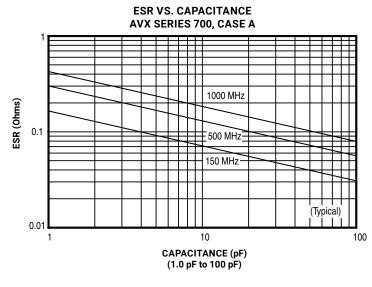
NON-MAGNETIC CONFIGURATION

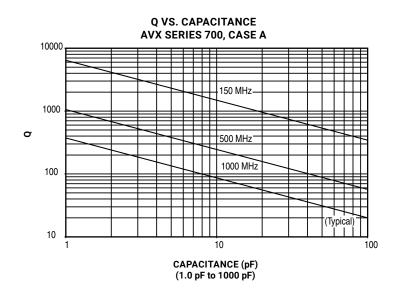
AVX Series & Case Size	AVX Term.	MIL-PRF-55681	Case Size	Case Size Non-Magnetic Body Dimensions Lead and Termin inches (mm) Dimensions and M Dimensions and M			inches (mm)		
& Case Size	Code		α Type	Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials
700A	WN	Meets Requirements	A 😭 Non-Mag Solder Plate	$\begin{array}{c c} Y \to \left \left \leftarrow \right & \downarrow \\ \hline \left \begin{array}{c} \underline{w} \\ \end{array} \right & \downarrow \\ \to \left \begin{array}{c} L \end{array} \right \leftarrow \uparrow \to \left \begin{array}{c} T \end{array} \right \leftarrow \end{array}$.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Non-Magnetic Barrier Termination
700A	PN	Meets Requirements	A ₩ Non-Mag Pellet	Y→ ← ↓ w	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010+.010005 (0.25+0.25 -0.13)	Heavy Tin/ Lead Coated, over Non-Magnetic Barrier Termination
700A	TN	Meets Requirements	A Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \left \begin{array}{c} \bot \\ \hline \end{array} \right. \\ \to \left \begin{array}{c} \bot \\ \end{array} \right. \\ \downarrow \left[\begin{array}{c} \bot \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \\ \end{array} \right] $.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination

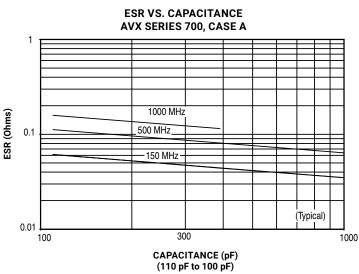
^{*}Capacitors with values greater than 100 pF contain a trace magnetic element that may exhibit weak magnetic properties.

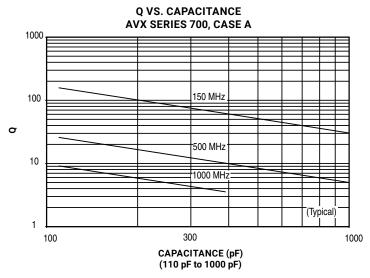

RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

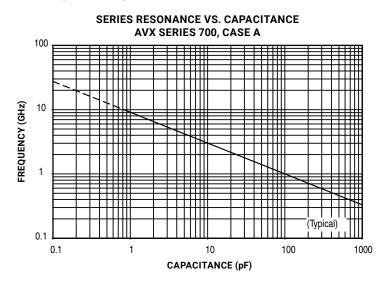

SUGGESTED MOUNTING PAD DIMENSIONS

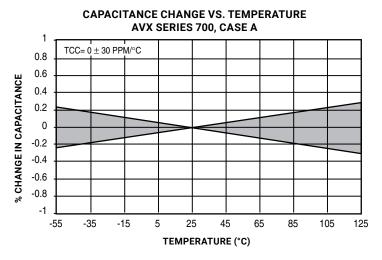


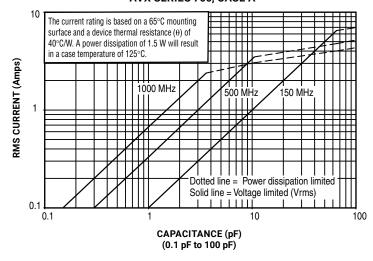

Case A								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.			
Vertical Mount	Normal	.070	.050	.030	.130			
vertical Mount	High Density	.050	.030	.030	.090			
Horizontal Mount	Normal	.080	.050	.030	.130			
HOHZOHILAH MOUHL	High Density	.060	.030	.030	.090			


Dimensions are in inches.

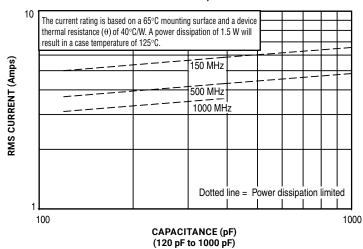
PERFORMANCE DATA

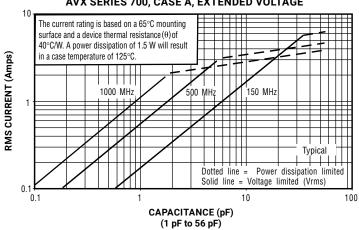

RF/Microwave Multilayer Capacitors (MLC)

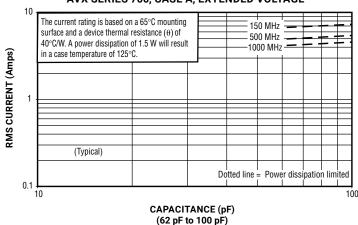

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors



PERFORMANCE DATA




CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A


CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A

CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A, EXTENDED VOLTAGE

CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A, EXTENDED VOLTAGE

113020

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 4	-	DK0004	700A Porcelain and Ceramic 16 different values, 15 pc.	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 ±0.1	\$158.40
Kit 4T	ROHS	DK0004T	min. per value	0.1 to 2.0	1.5, 1.8, 2.0 ±0.25	\$136.40
Kit 5	-	DK0005	700A Porcelain and Ceramic 16 different values, 15 pc.	1.0 to 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3,	\$158.40
Kit 5T	ROHS	DK0005T	min. per value	1.0 to 10	10	\$136.40
Kit 6	-	DK0006	700A Porcelain and Ceramic 16 different values, 15 pc.	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39,	\$158.40
Kit 6T	RoHS	DK0006T		10 10 100	47, 56, 68, 82, 100 ± 5%	\$158.40
Kit 7	-	DK0007	700A Porcelain and Ceramic	100 to 1000	100, 120, 150, 180, 200, 220, 240, 270 300, 330, 390, 470	\$158.40
Kit 7T	ROHS	DK0007T	16 different values, 15 pc. min. per value	100 to 1000	560, 680, 820, 1000 ±10	\$138.40