Features

■ True dual-ported memory cells that enable simultaneous reads of the same memory location

- $2 \mathrm{~K} \times 8$ organization

■ 0.65 micron CMOS for optimum speed and power

- High speed access: 15 ns
- Low operating power: $\mathrm{I}_{\mathrm{CC}}=110 \mathrm{~mA}$ (maximum)
- Fully asynchronous operation
- Automatic power down
- Master CY7C132/CY7C136/CY7C136A ${ }^{[1]}$ easily expands data bus width to 16 or more bits using slave CY7C142/CY7C146
■ $\overline{\text { BUSY }}$ output flag on CY7C132/CY7C136/CY7C136A; $\overline{B U S Y}$ input on CY7C142/CY7C146
■ $\overline{\mathrm{INT}}$ flag for port to port communication (52-Pin PLCC/PQFP versions)
■ CY7C136, CY7C136A, and CY7C146 available in 52-pin PLCC and 52-pin PQFP packages

Functional Description

The CY7C132, CY7C136, CY7C136A, CY7C142, and CY7C146 are high speed CMOS $2 \mathrm{~K} \times 8$ dual-port static RAMs. Two ports are provided to permit independent access to any location in memory. The CY7C132, CY7C136, and CY7C136A can be used as either a standalone 8 -bit dual-port static RAM or as a MASTER dual-port RAM, in conjunction with the CY7C142/CY7C146 SLAVE dual-port device. They are used in systems that require 16 -bit or greater word widths. This is the solution to applications that require shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.
Each port has independent control pins; chip enable ($\overline{\mathrm{CE}})$, write enable ($R / \overline{\mathrm{W}}$), and output enable ($\overline{\mathrm{OE})}$. $\overline{\mathrm{BUSY}}$ flags are provided on each port. In addition, an interrupt flag (INT) is provided on each port of the 52-pin PLCC version. BUSY signals that the port is trying to access the same location currently being accessed by the other port. On the PLCC version, INT is an interrupt flag indicating that data is placed in an unique location (7FF for the left port and 7FE for the right port).
An automatic power down feature is controlled independently on each port by the chip enable $(\overline{\mathrm{CE}})$ pins.

■ Pb-free packages available

Logic Block Diagram

Notes

1. CY7C136 and CY7C136A are functionally identical.
2. CY7C132/CY7C136/CY7C136A (Master): $\overline{B U S Y}$ is open drain output and requires pull up resistor. CY7C142/CY7C146 (Slave): $\overline{B U S Y}$ is input.
3. Open drain outputs; pull up resistor required.

Pinouts

Figure 1. 52-Pin PLCC (Top View)

Figure 2. 52-Pin PQFP (Top View)

Selection Guide

Specification		$\begin{aligned} & \text { 7C136-15 } \\ & \text { 7C146-15 } \end{aligned}$	$\begin{aligned} & \text { 7C132-25 } \\ & \text { 7C136-25 } \\ & \text { 7C142-25 } \\ & \text { 7C146-25 } \end{aligned}$	$\begin{aligned} & \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$	$\begin{aligned} & \text { 7C132-35 } \\ & \text { 7C136-35 } \\ & \text { 7C142-35 } \\ & \text { 7C146-35 } \end{aligned}$	7C132-45 7C136-45 7C142-45 7C146-45	7C132-55 7C136-55 7C136A-55 7C142-55 7C146-55	Unit
Maximum Access Time		15	25	30	35	45	55	ns
Maximum Operating Current	Com'//Ind	190	170	170	120	120	110	mA
Maximum Standby Current	Com'//Ind	75	65	65	45	45	35	mA

Shaded areas contain preliminary information.

Note:
4. 15 ns and 25 ns version available in PQFP and PLCC packages only.

CY7C132, CY7C136 CY7C136A, CY7C142, CY7C146

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential
(Pin 48 to Pin 24).
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

DC Input Voltage ... -3.5 V to +7.0 V
Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage.. > 2001V
(per MIL-STD-883, Method 3015)
Latch up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C136-15[4] } \\ & \text { 7C146-15 } \end{aligned}$		7C132-307C13]7C142-25, 307C146-25, 30		7C132-35,45 7C136-35,45 7C142-35,45 7C146-35,45		7C132-55 7C136-55 7C136A-55 7C142-55 7C146-55		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{OH}	Output HIGH voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW voltage	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=16.0 \mathrm{~mA}^{[5]}$			0.5		0.5		0.5		0.5	
V_{IH}	Input HIGH voltage			2.2		2.2		2.2		2.2		V
V_{IL}	Input LOW voltage				0.8		0.8		0.8		0.8	V
IIX	Input load current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{Oz}	Output leakage current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
Ios	Output short circuit current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-350		-350		-350		-350	mA
${ }^{\text {ICC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \overline{\overline{C E}}=V_{\text {IL }}, \text { Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}[7] \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Com'V\| } \\ \text { Ind'I } \end{array}$		190		170		120		110	mA
$\mathrm{I}_{\text {SB1 }}$	Standby current both ports, TTL Inputs	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \text { [7] } \end{aligned}$	Com'l/ Ind'I		75		65		45		35	mA
${ }^{\text {SB2 }}$	Standby Current One Port, TTL Inputs	$\overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}} \text {, }$ Active Port Outputs Open, $f=f_{\text {MAX }}{ }^{[7]}$	Com'll\| Ind'l		135		115		90		75	mA
${ }^{\text {SB3 }}$	Standby Current Both Ports, CMOS Inputs	$\begin{aligned} & \text { Both Ports } \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \\ & \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	$\begin{aligned} & \text { Com'V\| } \\ & \text { Ind'I } \end{aligned}$		15		15		15		15	mA
${ }^{\text {SB4 }}$	Standby Current One Port, CMOS Inputs	$\begin{aligned} & \text { One Port } \overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{I N}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V}, \\ & \text { Active Port Outputs Open, } \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[7]} \end{aligned}$	Com'l/ Ind'I		125		105		85		70	mA

[^0]
Notes

5. $\overline{B U S Y}$ and $\overline{\text { INT pins only. }}$
6. Duration of the short circuit should not exceed 30 seconds.
7. At $f=f_{\text {MAX }}$, address and data inputs are cycling at the maximum frequency of read cycle of $1 / \mathrm{t}_{\mathrm{rc}}$ and using AC Test Waveforms input levels of GND to 3 V .

CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Capacitance

This parameter is guaranteed but not tested.

Parameter	Description	Test Conditions	Max	Unit
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		10	pF

Figure 3. AC Test Loads and Waveforms

Switching Characteristics

Over the Operating Range (Speeds $-15,-25,-30$) ${ }^{[8]}$

Parameter	Description	$\begin{gathered} \text { 7C136-15 }{ }^{[4]} \\ 7 \mathrm{C} 146-15 \end{gathered}$		$\begin{gathered} \text { 7C132-25 } \\ \text { 7C136-25 } \\ \text { 7C142-25 } \\ \text { 7C146-25 } \end{gathered}$		$\begin{aligned} & \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		25		30		ns
t_{AA}	Address to Data Valid ${ }^{[9]}$		15		25		30	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	0		0		0		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid ${ }^{[9]}$		15		25		30	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid ${ }^{[9]}$		10		15		20	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7,10]}$	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High Z ${ }^{[7,10,11]}$		10		15		15	ns
t LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7,10]}$	3		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,10,11]}$		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up ${ }^{[7]}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down ${ }^{[7]}$		15		25		25	ns

Shaded areas contain preliminary information.

Notes

8. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and 30 pF load capacitance.
9. AC test conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
10. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$.
11. $t_{\text {LZCE }}, t_{\text {LZWE }}, t_{\text {HZOE }}, t_{\text {LZOE }} t_{\text {HZCE, }}$ and $t_{\text {HZWE }}$ are tested with $C_{L}=5 p F$ as in (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Switching Characteristics

Over the Operating Range (Speeds $-15,-25,-30){ }^{[8]}$ (continued)

Parameter	Description	$\begin{gathered} \text { 7C136-15 }{ }^{[4]} \\ 7 \mathrm{C} 146-15 \end{gathered}$		$\begin{gathered} \text { 7C132-25 } \\ \text { 7C136-25 } \\ \text { 7C142-25 } \\ \text { 7C146-25 } \end{gathered}$		$\begin{aligned} & \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	

Write Cycle ${ }^{[12]}$

${ }^{\text {tw }}$ w	Write Cycle Time	15		25		30		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	12		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Setup to Write End	12		20		25		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	R/产 Pulse Width	12		15		25		ns
$\mathrm{t}_{\text {SD }}$	Data Setup to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HzWE }}$	R/్̄W LOW to High $Z^{[7]}$		10		15		15	ns
t LzWE	R/W W HIGH to Low $\mathrm{Z}^{[7]}$	0		0		0		ns

Busy/Interrupt Timing

$t_{\text {bLA }}$	BUSY LOW from Address Match		15		20		20	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\overline{B U S Y}} \mathrm{HIGH}$ from Address Mismatch ${ }^{[13]}$		15		20		20	ns
$\mathrm{t}_{\mathrm{BLC}}$	$\overline{\text { BUSY }}$ LOW from $\overline{\mathrm{CE}}$ LOW		15		20		20	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\mathrm{CE}}$ HIGH ${ }^{[13]}$		15		20		20	ns
t_{PS}	Port Set Up for Priority	5		5		5		ns
${ }^{\text {WWB }}$	R/్̄W LOW after $\overline{\text { BUSY }}$ LOW ${ }^{[14]}$	0		0		0		ns
t_{WH}	R/W HIGH after $\overline{\text { BUSY }}$ HIGH	13		20		30		ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Valid Data		15		25		30	ns
$\mathrm{t}_{\text {DDD }}$	Write Data Valid to Read Data Valid		Note 15		Note 15		Note 15	ns
$\mathrm{t}_{\text {WDD }}$	Write Pulse to Data Delay		Note 15		Note 15		Note 15	ns

Interrupt Timing

${ }^{\text {t WINS }}$	R/产 to İITERRUPT Set Time	15	25	25	ns
$\mathrm{t}_{\text {EINS }}$	$\overline{\mathrm{CE}}$ to INTERRUPT Set Time	15	25	25	ns
$\mathrm{t}_{\text {INS }}$	Address to INTERRUPT Set Time	15	25	25	ns
$\mathrm{t}_{\text {OINR }}$	$\overline{\mathrm{OE}}$ to INTERRUPT Reset Time ${ }^{[13]}$	15	25	25	ns
$\mathrm{t}_{\text {EINR }}$	$\overline{\mathrm{CE}}$ to INTERRUPT Reset Time ${ }^{[13]}$	15	25	25	ns
$\mathrm{t}_{\text {INR }}$	Address to INTERRUPT Reset Time ${ }^{[13]}$	15	25	25	ns

Shaded areas contain preliminary information.

[^1]CY7C132, CY7C136

Switching Characteristics

Over the Operating Range (Speeds $-35,-45,-55)^{[8]}$

Parameter	Description	7C132-357C136-357C142-357C146-35		$\begin{aligned} & \text { 7C132-45 } \\ & \text { 7C136-45 } \\ & \text { 7C142-45 } \\ & \text { 7C146-45 } \end{aligned}$		$\begin{gathered} \text { 7C132-55 } \\ \text { 7C136-55 } \\ \text { 7C136A-55 } \\ \text { 7C142-55 } \\ \text { 7C146-55 } \end{gathered}$		Unit
		Min	Max	Min	Max	Min	Max	

Read Cycle

t_{RC}	Read Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid ${ }^{[9]}$		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	0		0		0		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid ${ }^{[9]}$		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid ${ }^{[9]}$		20		25		25	ns
t lzoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7,10]}$	3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7,10,11]}$		20		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7,10]}$	5		5		5		ns
thZCE	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,10,11]}$		20		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up ${ }^{[7]}$	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down ${ }^{[7]}$		35		35		35	ns

Write Cycle ${ }^{[12]}$

t_{wc}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Setup to Write End	30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	R/产 Pulse Width	25		30		30		ns
$\mathrm{t}_{\text {SD }}$	Data Setup to Write End	15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
thzWE	R/产 LOW to High $\mathrm{Z}^{[7]}$		20		20		25	ns
tıwe	$\mathrm{R} / \overline{\mathrm{W}}$ HIGH to Low $\mathrm{Z}^{[7]}$	0		0		0		ns

Busy/Interrupt Timing

$t_{\text {BLA }}$	$\overline{\text { BUSY }}$ LOW from Address Match		20		25		30	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\text { BUSY }}$ HIGH from Address Mismatch ${ }^{[13]}$		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW		20		25		30	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE }}$ HIGH ${ }^{[13]}$		20		25		30	ns
t_{PS}	Port Set Up for Priority	5		5		5		ns
$\mathrm{t}_{\text {WB }}$	R/W LOW after $\overline{\text { BUSY }}$ LOW ${ }^{[14]}$	0		0		0		ns
${ }^{\text {t }}$ WH	R/̄W HIGH after $\overline{\text { BUSY }}$ HIGH	30		35		35		ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Valid Data		35		45		45	ns
$\mathrm{t}_{\text {DDD }}$	Write Data Valid to Read Data Valid		Note 15		Note 15		Note 15	ns
$\mathrm{t}_{\text {WDD }}$	Write Pulse to Data Delay		Note 15		Note 15		Note 15	ns

CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Switching Characteristics

Over the Operating Range (Speeds $-35,-45,-55$) ${ }^{[8]}$ (continued)

Parameter	Description	7C132-357C136-357C142-357C146-35		$\begin{aligned} & \text { 7C132-45 } \\ & \text { 7C136-45 } \\ & \text { 7C142-45 } \\ & \text { 7C146-45 } \end{aligned}$		$\begin{gathered} \text { 7C132-55 } \\ \text { 7C136-55 } \\ \text { 7C136A-55 } \\ \text { 7C142-55 } \\ \text { 7C146-55 } \end{gathered}$		Unit
		Min	Max	Min	Max	Min	Max	
Interrupt Timing ${ }^{[16]}$								
$\mathrm{t}_{\text {WINS }}$	R/产 to INTERRUPT Set Time		25		35		45	ns
$\mathrm{t}_{\text {EINS }}$	$\overline{\mathrm{CE}}$ to INTERRUPT Set Time		25		35		45	ns
$\mathrm{t}_{\text {INS }}$	Address to INTERRUPT Set Time		25		35		45	ns
$\mathrm{t}_{\text {OINR }}$	$\overline{\mathrm{OE}}$ to INTERRUPT Reset Time ${ }^{[13]}$		25		35		45	ns
$\mathrm{t}_{\text {EINR }}$	$\overline{\mathrm{CE}}$ to INTERRUPT Reset Time ${ }^{[13]}$		25		35		45	ns
$\mathrm{t}_{\mathrm{INR}}$	Address to İINTERRUPT Reset Time ${ }^{[13]}$		25		35		45	ns

Switching Waveforms

Figure 4. Read Cycle No. 1 (Either Port-Address Access) ${ }^{[17,18]}$

Figure 5. Read Cycle No. 2 (Either Port- $\overline{\operatorname{CE} / \overline{O E})^{[17, ~ 19]}}$

Notes

17. R/W is HIGH for read cycle
18. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathbb{}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
19. Address valid prior to or coincident with CE transition LOW.

CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Switching Waveforms (continued)
Figure 6. Read Cycle No. 3 (Read with BUSY Master: CY7C132 and CY7C136/CY7C136A)

Figure 7. Write Cycle No. $1 \overline{\mathrm{OE}}$ Three-States Data I/Os—Either Port) ${ }^{[12, ~ 20]}$

Note
20. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $\mathrm{t}_{\mathrm{PWE}}$ or $\mathrm{t}_{\mathrm{HZWE}}+\mathrm{t}_{\mathrm{SD}}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.

CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Switching Waveforms (continued)
Figure 8. Write Cycle No. 2 (R/W Three-States Data I/Os—Either Port) ${ }^{[12,21]}$

Figure 9. Busy Timing Diagram No. 1 ($\overline{C E}$ Arbitration)

$\overline{\mathrm{CE}}_{\mathrm{R}}$ Valid First:

[^2]CY7C132, CY7C136
CY7C136A, CY7C142, CY7C146

Switching Waveforms (continued)
Figure 10. Busy Timing Diagram No. 2 (Address Arbitration)

Figure 11. Busy Timing Diagram No. 3 (Write with $\overline{B U S Y}$, Slave: CY7C142/CY7C146)

Switching Waveforms (continued)
Interrupt Timing Diagrams ${ }^{[16]}$
Figure 12. Left Side Sets $\overline{\mathrm{INT}}_{\mathrm{R}}$

Figure 13. Right Side Clears $\overline{\mathrm{INT}}_{\mathrm{R}}$

Figure 14. Right Side Sets $\overline{\mathbf{N T}}_{\mathrm{L}}$

Figure 15. Right Side Clears $\overline{\mathrm{INT}}_{\mathrm{L}}$

Figure 16. Typical DC and AC Characteristics

CY7C132, CY7C136 CY7C136A, CY7C142, CY7C146

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C136-15JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-15NC	51-85042	52-Pin Plastic Quad Flatpack	
25	CY7C136-25JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-25JXC		52-Pin Plastic Leaded Chip Carrier (Pb-Free)	
	CY7C136-25NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136-25NXC		52-Pin Plastic Quad Flatpack (Pb-Free)	
	CY7C136-25JXI	51-85004	52-Pin Plastic Leaded Chip Carrier (Pb-Free)	Industrial
30	CY7C136-30JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-30NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136-30JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
35	CY7C136-35JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-35NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136-35JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
45	CY7C136-45JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-45NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136-45JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
55	CY7C136-55JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C136-55JXC		52-Pin Plastic Leaded Chip Carrier (Pb-Free)	
	CY7C136-55NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136-55NXC		52-Pin Plastic Quad Flatpack (Pb-Free)	
	CY7C136-55JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
	CY7C136A-55JXI		52-Pin Plastic Leaded Chip Carrier (Pb-Free)	
	CY7C136-55NI	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C136A-55NXI		52-Pin Plastic Quad Flatpack (Pb-Free)	
15	CY7C146-15JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-15NC	51-85042	52-Pin Plastic Quad Flatpack	
25	CY7C146-25JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-25JXC		52-Pin Plastic Leaded Chip Carrier (Pb-Free)	
	CY7C146-25NC	51-85042	52-Pin Plastic Quad Flatpack	
30	CY7C146-30JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-30NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C146-30JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
35	CY7C146-35JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-35NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C146-35JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
45	CY7C146-45JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-45NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C146-45JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial
55	CY7C146-55JC	51-85004	52-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C146-55JXC		52-Pin Plastic Leaded Chip Carrier (Pb-Free)	
	CY7C146-55NC	51-85042	52-Pin Plastic Quad Flatpack	
	CY7C146-55JI	51-85004	52-Pin Plastic Leaded Chip Carrier	Industrial

Package Diagrams

Figure 17. 52-Pin Plastic Leaded Chip Carrier, 51-85004

51-85004-*A

Figure 18. 52-Pin Plastic Quad Flatpack, 51-85042

CY7C132, CY7C136 CY7C136A, CY7C142, CY7C146

Document History Page

Document Title: CY7C132, CY7C136, CY7C136A, CY7C142, CY7C146 2K x 8 Dual-Port Static RAM
Document Number: 38-06031

Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	110171	$10 / 21 / 01$	SZV	Change from Spec number: 38-06031
*A	128959	$09 / 03 / 03$	JFU	Added CY7C136-55NI to Order Information
*B	236748	See ECN	YDT	Removed cross information from features section
*C	393184	See ECN	YIM	Added Pb-Free Logo Added Pb-Free parts to ordering information: CY7C136-25JXC, CY7C136-25NXC, CY7C136-55JXC, CY7C136-55NXC, CY7C136-55JXI, CY7C136-55NXI, CY7C146-25JXC, CY7C146-55JXC
*D	2623658	$12 / 17 / 08$	VKN/PYRS	Added CY7C136-25JXI part Removed CY7C132/142 from the Ordering information table Removed 48-Pin DIP and 52-Pin Square LCC package from the data sheet
*E	2678221	$03 / 24 / 2009$	VKN/AESA	Added CY7C136A-55JXI, and CY7C136A-55NXI parts.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC
Clocks \& Buffers
Wireless
Memories
Image Sensors
psoc.cypress.com
clocks.cypress.com wireless.cypress.com memory.cypress.com image.cypress.com

PSoC Solutions

General
Low Power/Low Voltage
Precision Analog
LCD Drive
CAN 2.0b
USB
psoc.cypress.com/solutions psoc.cypress.com/low-power psoc.cypress.com/precision-analog psoc.cypress.com/lcd-drive psoc.cypress.com/can psoc.cypress.com/usb

[^3]
[^0]: Shaded areas contain preliminary information.

[^1]: Notes
 12. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and R / \bar{W} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.
 13. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
 14. CY7C142/CY7C146 only.
 15. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following $\overline{\mathrm{BUSY}}$ on Port B goes HIGH.
 Port B's address toggled.
 $\overline{\mathrm{CE}}$ for Port B is toggled.
 R / \bar{W} for Port B is toggled during valid read.
 16. 52-pin PLCC and PQFP versions only.

[^2]: Note
 21. If the $\overline{C E}$ LOW transition occurs simultaneously with or after the R / \bar{W} LOW transition, the outputs remain in a high impedance state.

[^3]: © Cypress Semiconductor Corporation, 2005-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

 Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 Use may be limited by and subject to the applicable Cypress software license agreement

