
HIGH VOLTAGE CERAMIC CAPACITORS

Cat.No.C41E-2

CONTENTS

		7

Part Numbering —	2	
1 Radial Lead Type DHR Series (DC10-15kV)	3	
Specifications and Test Methods	5	
Typical Characteristics Data/Packaging	7	
DHR Series (Caution/Notice)	8	
2 Mold Type DHS N4700 Series (DC10-40kV)	10	
Typical Characteristics Data / Specifications and Test Methods	12	
Mold Type DHS Z5V Series (DC20-40kV)	13	
Typical Characteristics Data	14	
Specifications and Test Methods	15	
DHS Series Caution and Notice	16	
ISO9000 Certifications	18	

muRata

Recycled Paper

Part Numbering

High Voltage Ceramic Capacitors (over 10kV)

●Product ID

Product ID	
DH	High Voltage Ceramic Capacitors (over 10kV)

Series Category

Code	Contents
R	Radial Type
s	Mold Type

First three digits of part number (Product ID and Series Category) express "Series Name".

3Temperature Characteristics

Code	Temp. Char.	Cap. Change or Temp. Coeff.	Temp. Range	
В3	В	±10%	–25 to +85℃	
F4	Z5V	+22%, -82%	+10 to +85℃	
4E	ZM	4700±1000nnm/°C	+20 to +85℃	
4E	N4700	-4700±1000ppm/℃	T20 10 T65 C	

4Rated Voltage

Code	Rated Voltage
4A	DC10kV
4B	DC12kV
4C	DC15kV
4D	DC20kV
4F	DC30kV
4G	DC40kV

6 Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

6Capacitance Tolerance

Code	Capacitance Tolerance		
K	±10%		
М	±20%		
Z	+80%, -20%		

⊘Lead Type (**DHR** Series)

Code	Lead Type	Lead Spacing	Lead Diameter
2B	Straight Long	9.5mm	ø0.65mm
2F	Straight Long	12.7mm	ø0.8mm

7Body Diameter and Terminal Type (**DHS** Series)

Code	Body Diameter	Terminal Type
C2	20mm	
D2	24mm	
H2	30mm	ISO M4, P0.7
L2	38mm	Tapped Holes
N2	43mm	(Metric Screw Thread)
R2	52mm	
T2	60mm	
СХ	20mm	
DX	24mm	
нх	30mm	No.8-32, NC-2B
LX	38mm	Tapped Holes
NX	43mm	(Inch Screw Thread)
RX	52mm	
TX	60mm	

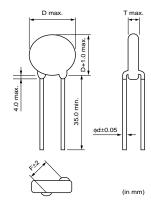
8 Packaging

Code	Packaging	
В	Bulk	

muRata

-

Radial Lead Type DHR Series (DC10-15kV)


■ Features

- 1. Small size
- 2. Excellent heat-proof, humidity-proof and high-dielectric strength voltage.
- 3. Coated with flame-retardant epoxy resin.

■ Applications

- 1. Color TV doublers and triplers
- 2. High voltage DC power supplies (PPCs, X-ray apparatus, air cleaner, lasers, etc.)
- 3. Tuning capacitor in focus circuit for display

■ Marking

Nominal body of	Temp. Char.	ZM	В	
Norminal body dia.				
ø 8mm		101 10K	101 10K	
	ø9mm and 10mm	221K 10K•	221M 10K	
	ø11mm to 14mm	ZM 471K 10K	B 471M 10K	
ø15mm to 18mm		102KZ (M 10K 0050	102MB (M 10K 0050	
	Nominal body dia. Ø8mm	Omitted	0	
Temperature	Nominal body dia. Ø9 and 10mm	Marked with • (dot)	Omitted	
Characteristics	Nominal body dia. Ø11 to 14mm	Marked with code.	Marked with code.	
	Nominal body dia. ø15mm min.	Marked with Z.	Marked with code.	
No	ominal Capacitance	Under 100pF : Actual value, 100pF and over : Marked with 3 figures.		
Capacitance Tolerance		Marked with code, omitted for nominal body diameter ø8mm and under.		
Rated Voltage		Marked with code.		
Manufacturer's Identification		Marked with ℳ, omitted for nominal body diameter ø14mm and under.		
Manufactured Date		Abbreviation, omitted for nominal body diameter ø14mm and under. (Ex.) 0050 (1): Last numeral in year (3): Fix No. (2): Number in the month		

ZM Characteristics

Part Number	Rated Voltage (kV)	Capacitance (pF)	Body Dia. D (mm)	Lead Spacing F (mm)	Body Thickness T (mm)	Lead Dia. ød (mm)
DHR4E4A101K2BB	DC10	100 +10, -10%	8.0	9.5	7.0	0.65
DHR4E4A151K2BB	DC10	150 +10, -10%	8.0	9.5	7.0	0.65
DHR4E4A221K2BB	DC10	220 +10, -10%	9.0	9.5	7.0	0.65
DHR4E4A331K2BB	DC10	330 +10,-10%	10.0	9.5	7.0	0.65
DHR4E4A471K2BB	DC10	470 +10, -10%	12.0	9.5	7.0	0.65
DHR4E4A681K2BB	DC10	680 +10, -10%	13.0	9.5	7.0	0.65
DHR4E4A102K2BB	DC10	1000 +10, -10%	15.0	9.5	7.0	0.65
DHR4E4B101K2BB	DC12	100 +10, -10%	8.0	9.5	7.3	0.65
DHR4E4B151K2BB	DC12	150 +10, -10%	9.0	9.5	7.3	0.65
DHR4E4B221K2BB	DC12	220 +10, -10%	9.0	9.5	7.3	0.65
DHR4E4B331K2BB	DC12	330 +10, -10%	11.0	9.5	7.3	0.65
DHR4E4B471K2BB	DC12	470 +10, -10%	12.0	9.5	7.3	0.65
DHR4E4B681K2BB	DC12	680 +10, -10%	14.0	9.5	7.3	0.65
DHR4E4B102K2BB	DC12	1000 +10, -10%	16.0	9.5	7.3	0.65
DHR4E4C101K2BB	DC15	100 +10, -10%	8.0	9.5	8.2	0.65
DHR4E4C151K2BB	DC15	150 +10, -10%	9.0	9.5	8.2	0.65
DHR4E4C221K2BB	DC15	220 +10, -10%	10.0	9.5	8.2	0.65
DHR4E4C331K2BB	DC15	330 +10, -10%	12.0	9.5	8.2	0.65
DHR4E4C471K2BB	DC15	470 +10, -10%	13.0	9.5	8.2	0.65
DHR4E4C681K2BB	DC15	680 +10, -10%	15.0	9.5	8.2	0.65
DHR4E4C102K2FB	DC15	1000 +10, -10%	18.0	12.7	8.2	0.8

B Characteristics

Part Number	Rated Voltage (kV)	Capacitance (pF)	Body Dia. D (mm)	Lead Spacing F (mm)	Body Thickness T (mm)	Lead Dia. ød (mm)
DHRB34A101M2BB	DC10	100 +20, -20%	8.0	9.5	7.0	0.65
DHRB34A151M2BB	DC10	150 +20, -20%	8.0	9.5	7.0	0.65
DHRB34A221M2BB	DC10	220 +20, -20%	9.0	9.5	7.0	0.65
DHRB34A331M2BB	DC10	330 +20, -20%	10.0	9.5	7.0	0.65
DHRB34A471M2BB	DC10	470 +20, -20%	12.0	9.5	7.0	0.65
DHRB34A681M2BB	DC10	680 +20, -20%	13.0	9.5	7.0	0.65
DHRB34A102M2BB	DC10	1000 +20, -20%	15.0	9.5	7.0	0.65
DHRB34B101M2BB	DC12	100 +20, -20%	8.0	9.5	7.7	0.65
DHRB34B151M2BB	DC12	150 +20, -20%	9.0	9.5	7.5	0.65
DHRB34B221M2BB	DC12	220 +20, -20%	9.0	9.5	7.5	0.65
DHRB34B331M2BB	DC12	330 +20, -20%	11.0	9.5	7.5	0.65
DHRB34B471M2BB	DC12	470 +20, -20%	12.0	9.5	7.5	0.65
DHRB34B681M2BB	DC12	680 +20, -20%	14.0	9.5	7.5	0.65
DHRB34B102M2BB	DC12	1000 +20, -20%	16.0	9.5	7.5	0.65
DHRB34C101M2BB	DC15	100 +20, -20%	8.0	9.5	8.5	0.65
DHRB34C151M2BB	DC15	150 +20, -20%	9.0	9.5	8.2	0.65
DHRB34C221M2BB	DC15	220 +20, -20%	10.0	9.5	8.2	0.65
DHRB34C331M2BB	DC15	330 +20, -20%	12.0	9.5	8.2	0.65
DHRB34C471M2BB	DC15	470 +20, -20%	13.0	9.5	8.2	0.65
DHRB34C681M2BB	DC15	680 +20, -20%	15.0	9.5	8.2	0.65
DHRB34C102M2FB	DC15	1000 +20, -20%	18.0	12.7	8.2	0.8

Specifications and Test Methods

No.	ı	tem	Specifications	Testing Method				
1	Operating Temper	ature Range	-25 to +100°C	-				
2	Capacitance		Within the specified tolerance.	The capacitance should be measured at 20°C with 1±0.2kHz and AC 5V(r.m.s.) max.				
3	Dissipation Factor (D.F.)		ZM 1.0% max. B 2.5% max.	Same condition as capacitance.				
4	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.	The insulation resistance should be measured with DC1000V within 60±5 sec. of charging.				
		Between Lead Wires	No failure.	The capacitor should not be damaged when DC voltage of 150% of the rated voltage is applied between the lead wires for 60±5 sec. in insulating liquid or gas. (Charge/Discharge current≦50mA)				
5	Dielectric Strength	Body Insulation	No failure.	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, shortcircuited, is kept approximately 2mm off the metal balls as shown in the figure at right, and DC voltage of 3kV is applied for 10 sec. between capacitor lead wires and metal balls. (Charge/Discharge current≦50mA)				
6	Temperature Characteristics		Temp. Char. Temp. Coefficient or Max. Cap. Change ZM -4700±1000ppm/°C B ±10%	The capacitance measurement should be made at each step specified in table. Capacitance change from the value of step 3 should not exceed the limit specified. Step 1 2 3 4 5 Char. 1 2 3 4 5 ZM - 20±2°C 85±2°C 20±2°C 85±2°C 20±2°C B 20±2°C -25±3°C 20±2°C 85±2°C 20±2°C				
		Appearance	No marked defect.	The lead wires should be immersed into the melted solder of 350±10°C up to about 1.5 to 2.0mm from the main body for 3.5±0.5 sec. Post-treatment: Capacitor should be stored for 24±2 hrs. at				
7	Soldering Effect	Capacitance Change	Within ±10%					
,	Soldering Effect	Dielectric Strength (Between Lead Wires)	No failure.	*room condition.				
		Appearance	No marked defect.	Set the capacitor for 240±8 hrs. at 40±2°C in 90 to 95% relative				
		Capacitance Change	Within ±10%	humidity. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at *room condition.				
8	Humidity (Under Steady	D.F.	ZM 1.5% max. B 4.0% max.					
	State)	I.R.	5000MΩ min.					
		Dielectric Strength (Between Lead Wires)	No failure.					
		Appearance	No marked defect.	Apply a DC voltage of 125% of the rated voltage for 1000 ⁺⁴⁸				
		Capacitance Change	Within ±10%	hrs. in silicon oil at 85±2°C. Post-treatment: Capacitor should be stored for 24±2 hrs. at				
9	Life	D.F.	ZM 1.5% max. B 4.0% max.	*room condition. (Charge/Discharge current≦50mA)				
		I.R.	5000MΩ min.					
		Dielectric Strength (Between Lead Wires)	No failure					
			· <u>.</u>	<u>-</u>				

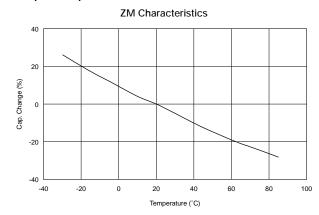
(Note) Tests for Dielectric Strength (between lead wires), Charge Discharge Test, Humidity, Temperature Cycle and Life should be performed with specimens having molded resin (MR1023C : made by Murata) extending over 3mm on all the surface.

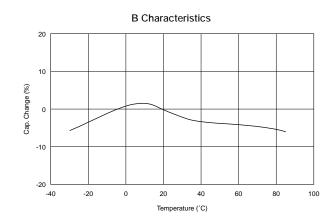
Continued on the following page.

^{* &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

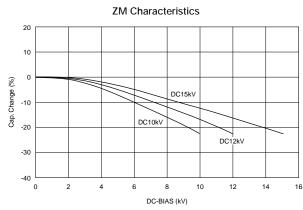
Continued from the preceding page.

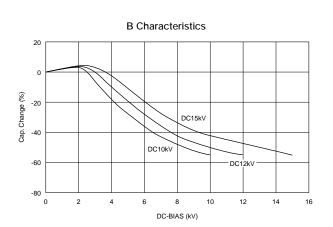

No.	o. Item		Specifications	Testing Method				
		Appearance Capacitance Change	No marked defect. Within ±10%	Charge discharge test should be measured in the following test circuit and cycle. Applied voltage: Rated voltage				
		D.F.	ZM 1.5% max. B 4.0% max.	Cycle time: 20000 cycle Post-treatment: Capacitor should be stored for 4 hrs. at *room				
		I.R.	5000MΩ min.	condition.				
10	Charge Discharge Test	Dielectric Strength (Between Lead Wires)		$\begin{array}{c c} & <\text{Circuit>} & <\text{Cycle>} \\ \hline R_1 & \text{SW} & \text{Charge} \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & &$				
		Appearance	No marked defect.	Temperature cycle should be measured in the following test.				
		Capacitance Change	Within ±10%	Cycle time: 5 cycle Post-treatment: Capacitor should be stored for 4 hrs. at *room condition.				
11	Temperature Cycle	D.F.	ZM 1.5% max. B 4.0% max.	+100°C				
		I.R.	5000MΩ min.	-30.C				
		Dielectric Strength (Between Lead Wires)	No failure.	- 30 1 30 (min)				
12	Strength of Lead	Pull	Lead wire should not be cut off.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.				
ıΖ		Bending	Capacitor should not be broken.	Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.				
13	3 Solderability of Leads		Solderability of Leads Lead wire should be soldered with uniform coating on the axial direction over $\frac{3}{4}$ of the circumferential direction		uniform coating on the axial direction	The lead wire of a capacitor should be dipped into a 25% methanol solution of rosin and then into molten solder of 235±5°C for 2±0.5 sec. In both cases the depth of dipping is u to about 1.5 to 2.0mm from the root of lead wires.		


(Note) Tests for Dielectric Strength (between lead wires), Charge Discharge Test, Humidity, Temperature Cycle and Life should be performed with specimens having molded resin (MR1023C: made by Murata) extending over 3mm on all the surface.

^{* &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

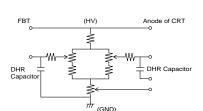
1


■ Cap.-Temp. Char.



Typical Characteristics Data/Packaging

■ Cap.-DC Bias Char.


■ Packaging Styles

Minimum Quantity (Order in Sets Only)	200 (pcs.)
Minimum Order Quantity	200 (pcs.)

 [&]quot;Minimum Quantity" means the number of units of each delivery or order.
 The quantity should be an integral multiple of the "minimum quantity".
 (Please note that the actual delivery quantity in a package may change sometimes.)

■ Example

DHR Series **(A)** Caution/Notice

■ ①Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The applied voltage load should be such that the capacitor's selfgenerated heat is within 10°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

■ ACaution (Storage and Operation Condition) Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture.

The capacitor is designed to be used in insulating media, such as epoxy resin, silicone oil, etc. There must be 3mm or more of insulating media for each direction of the capacitor.

Before cleaning, bonding, or molding this product,

verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%. Use capacitors within 6 months.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

DHR Series **(1)** Caution/Notice

C41E2.pdf 03.4.16

■ ①Caution (Soldering and Mounting)

1. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions. Temperature of iron-tip: 400 degrees C. max. Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION

WHEN THE PRODUCT IS USED.

■ **(**Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum. Do not vibrate the PCB/PWB directly. Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

■ Notice (Rating)

Capacitance change of capacitor

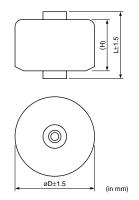
- 1. Class 1 capacitors Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.
- 2. Class 2 and 3 capacitors Class 2 and 3 capacitors with temperature characteristics B, E and F have an aging

characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

Mold Type DHS N4700 Series (DC10-40kV)

Murata's high voltage ceramic capacitors, DHS N4700 series, are designed to meet the stringent requirements of high voltage applications.

These capacitors are especially appropriate for applications which require a low dissipation factor and a small voltage coefficient.


Features

- 1. Epoxy resin encapsulated
- 2. Small size
- 3. Low dissipation factor and low heating value
- 4. Linear temperature characteristic
- 5. Low DC, AC-voltage coefficient

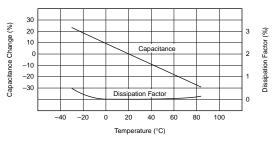
Applications

- Gas laser
- DC HV power supplies
- Lightning arresters, voltage distribution systems
- Electron microscopes, synchroscopes
- Electrostatic coating machines

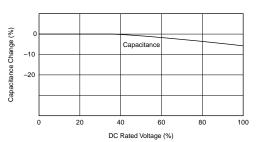
DC Rated Voltage (kV)	Depth of tapped holes (mm)
	, ,
10, 15	4
20, 30	6
40	8

Part Number	Capacitance	Capacitance	DC Rated	Dime	nsions	(mm)	Terminal Type
- I dit ivanibei	(pF)	Tolerance (%)	Voltage (kV)	D	L	Н	(Screw Thread Type)
DHS4E4A561KC2B	560			20			
DHS4E4A122KH2B	1200			30			
DHS4E4A282KL2B	2800	±10		38			ISO M4, P0.7 (Metric Screw Thread)
DHS4E4A502KR2B	5000			52			(Wethe Goldw Thicad)
DHS4E4A802KT2B	8000		10	60	16	12	
DHS4E4A561MCXB	560		10	20	16	12	No.8-32, NC-2B (Inch Screw Thread)
DHS4E4A122MHXB	1200			30			
DHS4E4A282MLXB	2800	±20		38			
DHS4E4A502MRXB	5000	-		52			
DHS4E4A802MTXB	8000			60			
DHS4E4C371KC2B	370			20			
DHS4E4C112KH2B	1100			30			
DHS4E4C192KL2B	1900	±10		38			ISO M4, P0.7 (Metric Screw Thread)
DHS4E4C342KR2B	3400			52			(Wethe Sciew Thread)
DHS4E4C532KT2B	5300		15	60	18	14	
DHS4E4C371MCXB	370		15	20	18	14	
DHS4E4C112MHXB	1100	±20		30			
DHS4E4C192MLXB	1900			38			No.8-32, NC-2B (Inch Screw Thread)
DHS4E4C342MRXB	3400			52			(inch Screw Inread)
DHS4E4C532MTXB	5300			60			

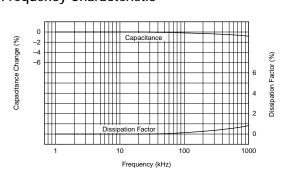
Continued on the following page.


Ontinued from the preceding page.

Part Number	Capacitance	Capacitance	DC Rated	Dime	nsions	(mm)	Terminal Type
r art reamber	(pF)	Tolerance (%)	Voltage (kV)	D	L	Н	(Screw Thread Type)
DHS4E4D281KC2B	280			20			
DHS4E4D881KH2B	880			30			ICO M4 D0 7
DHS4E4D142KL2B	1400	±10		38			ISO M4, P0.7 (Metric Screw Thread)
DHS4E4D252KR2B	2500			52			(,
DHS4E4D402KT2B	4000		20	60	24	20	
DHS4E4D281MCXB	280		20	20		20	
DHS4E4D881MHXB	880			30			N- 0.00 NO 0D
DHS4E4D142MLXB	1400	±20		38			No.8-32, NC-2B (Inch Screw Thread)
DHS4E4D252MRXB	2500			52			(IIICII Sciew Tilleau)
DHS4E4D402MTXB	4000			60			
DHS4E4F191KC2B	190			20			ISO M4, P0.7 (Metric Screw Thread)
DHS4E4F591KH2B	590			30		24	
DHS4E4F941KL2B	940	±10	- 30	38			
DHS4E4F172KR2B	1700			52			
DHS4E4F272KT2B	2700			60	28		
DHS4E4F191MCXB	190			20	20 2		No.8-32, NC-2B (Inch Screw Thread)
DHS4E4F591MHXB	590			30			
DHS4E4F941MLXB	940	±20		38			
DHS4E4F172MRXB	1700			52			
DHS4E4F272MTXB	2700			60			
DHS4E4G141KC2B	140			20			
DHS4E4G441KH2B	440]		30			100 144 50 7
DHS4E4G701KL2B	700	±10		38			ISO M4, P0.7 (Metric Screw Thread)
DHS4E4G132KR2B	1300]		52			(Wethe Colew Thicad)
DHS4E4G202KT2B	2000	±20	40	60	36	32	
DHS4E4G141MCXB	140		40	20	36	32	
DHS4E4G441MHXB	440			30			N- 0.00 NO 05
DHS4E4G701MLXB	700			38			No.8-32, NC-2B (Inch Screw Thread)
DHS4E4G132MRXB	1300]		52			
DHS4E4G202MTXB	2000]		60			


2

Typical Characteristics Data / Specifications and Test Methods


■ Temperature Characteristic

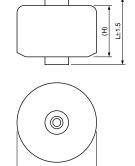
■ Typical Voltage Coefficient

■ Frequency Characteristic

No	Item		Specifications	Testing Method						
1	Operating Tempe	rature Range	-20 to +85°C							
2	Capacitance		Within the specified tolerance.	The capacitance should be measured at 20°C with 1±0.1kHz and AC 1 to 5V(r.m.s.).						
3	Temperature Characteristics		Temperature coefficient -4700±1000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in table. Capacitance change from the value of step 3 should not exceed the limit specified. Step 1 2 3 4 5 Temp. (°C) — 20±2 85±2 20±2						
4	Dissipation Fact	or (D.F.)	0.3% max.	The dissipation factor should be measured at 20°C with 1±0.1kHz and AC 1 to 5V(r.m.s.).						
5	Dielectric Strength	Between Terminal	No failure.	The capacitor should not be damaged when DC voltage of 150% of the rated voltage is applied between the terminals for 60±5 sec. in insulating liquid or gas. (Charge/Discharge current ≤ 50mA)						
6	Insulation Resista	ance (I.R.)	10000MΩ min.	The insulation resistance should be measured with DC1000V within 60±5 sec. of charging.						
7	Strength of Terminal	Torque Strength	Capacitor should not be broken.	When mounting the capacitor on equipment, be sure to mount them within the torque strength values shown in the table below. Terminal Type torque (N·m) ISO M4, No.8-32 1.5						
		Appearance	No marked defect.	Apply a DC voltage of 125% of the rated voltage for 100+24/-0 hrs. in						
8	Life	Capacitance Change	Within ±5%	silicon oil at 85±2°C.						
J	Liio	D.F.	1.0% max.	Post-treatment: Capacitor should be stored for 24 hrs. at *room						
		I.R.	1000M Ω min.	condition. (Charge/Discharge current ≤ 50mA)						
	Humidity	Appearance	No marked defect.	Set the capacitor for 100+24/-0 hrs. at 40±2°C in 90 to 95% relative						
9	(Under Steady	Capacitance Change	Within ±5%	humidity. Post-treatment: Capacitor should be stored for 24 hrs. at						
,	State)	D.F.	1.0% max.	*room condition.						
	State) I.R.		1000M Ω min.	TOOTI COTIGUIOTI.						

 $^{^{\}star}$ "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

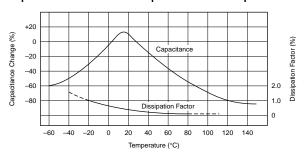
Mold Type DHS Z5V Series (DC20-40kV)


Features

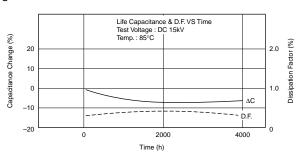
- 1. Epoxy resin encapsulated
- 2. Small size
- 3. Highly reliable internal construction
- 4. Wide selection of values
- 5. Up to DC 40kV working voltage

Applications

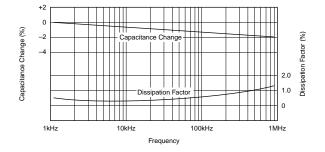
- Electrostatic coating machines
- Electron microscopes, synchroscopes
- CRT power supplies
- Lightning arrester voltage distribution systems
- DC HV power supplies

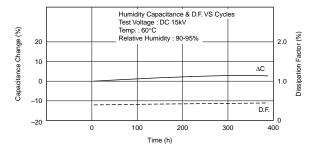


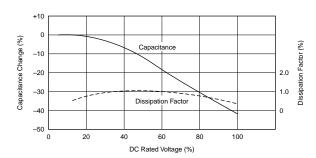
•


Part Number	Capacitance	Capacitance	DC Rated	Dime	nsions	(mm)	Terminal Type
Part Number	(pF)	Tolerance (%)	Voltage (kV)	D	L	Н	(Screw Thread Type)
DHSF44D601ZD2B	600			24			
DHSF44D102ZH2B	1000			30			100 144 50 5
DHSF44D242ZN2B	2400			43			ISO M4, P0.7 (Metric Screw Thread)
DHSF44D332ZR2B	3300			52			(Motific Colon Timoda)
DHSF44D482ZT2B	4800		20	60	26	24	
DHSF44D601ZDXB	600		20	24	20	24	
DHSF44D102ZHXB	1000			30			N - 0 00 NO 0D
DHSF44D242ZNXB	2400			43			No.8-32, NC-2B (Inch Screw Thread)
DHSF44D332ZRXB	3300			52			(
DHSF44D482ZTXB	4800			60			
DHSF44F461ZD2B	460	+80, -20	30	24		32	ISO M4, P0.7 (Metric Screw Thread)
DHSF44F781ZH2B	780			30			
DHSF44F182ZN2B	1800			43			
DHSF44F252ZR2B	2500			52			
DHSF44F362ZT2B	3600			60	34		No.8-32, NC-2B (Inch Screw Thread)
DHSF44F461ZDXB	460	+00, -20		24			
DHSF44F781ZHXB	780			30			
DHSF44F182ZNXB	1800			43			
DHSF44F252ZRXB	2500			52			
DHSF44F362ZTXB	3600			60			
DHSF44G341ZD2B	340			24			
DHSF44G571ZH2B	570			30			
DHSF44G132ZN2B	1300			43			ISO M4, P0.7 (Metric Screw Thread)
DHSF44G192ZR2B	1900			52			(
DHSF44G272ZT2B	2700		40	60	//1	39	
DHSF44G341ZDXB	340		40	24	41	39	
DHSF44G571ZHXB	570			30			No 9 22 NO 2D
DHSF44G132ZNXB	1300			43			No.8-32, NC-2B (Inch Screw Thread)
DHSF44G192ZRXB	1900			52			
DHSF44G272ZTXB	2700			60			

Typical Characteristics Data


■ Dissipation Factor and Capacitance-Temperature


■ Life


■ Dissipation Factor and Capacitance-Frequency

■ Humidity

■ Typical Voltage Coefficient

Specifications **Testing Method** Item Operating Temperature Range -20 to +85°C Within the specified The capacitance should be measured at 25°C with 1 \pm 0.1kHz 2 Capacitance and AC 1 to 5V (r.m.s.). tolerance. The capacitance measurement should be made at each step Capacitance change Capacitance change from the value of step 3 should not exceed the 3 **Temperature Characteristics** +22%/-82% limit specified. (Temp. range: +10 to $+85^{\circ}$ C) Temp. (°C) 25±2 -20±3 25±2 85±2 25±2 The dissipation factor should be measured at 25°C with 1 \pm 0.1kHz Dissipation Factor (D.F.) 1.5% max. and AC 1 to 5V (r.m.s.). The capacitor should not be damaged when DC voltage of 150% of Dielectric the rated voltage is applied between the terminals for 60±5 sec. in **Between Terminal** No failure. Strength insulating liquid or gas. (Charge/Discharge current \leq 50mA) The insulation resistance should be measured with DC1000V within 10000M Ω min. Insulation Resistance (I.R.) 60±5 sec. of charging. When mounting the capacitors on equipment, be sure to mount Strength of Capacitor should not be them within the torque strength values shown in the table below. 7 Torque Strength Terminal broken. Terminal Type torque (N·m) ISO M4, No.8-32 1.5 No marked defect. Apply a DC voltage of 125% of the rated voltage for 100+24/-0 hrs. in Appearance Capacitance Change Within ±20% silicon oil at 85±2°C. 8 Life 5.0% max. Post-treatment: Capacitor should be stored for 24 hrs. at *room 1000M Ω min. I.R. condition. (Charge/Discharge current \leq 50mA) Appearance No marked defect. Humidity Set the capacitor for 100+24/-0 hrs. at $40\pm2^{\circ}\text{C}$ in 90 to 95% relative Capacitance Change Within ±20% 9 (Under Steady humidity. Post-treatment: Capacitor should be stored for 24 hrs. at D.F. 5.0% max. State) *room condition. 1000M Ω min.

^{* &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

DHS Series **(A)** Caution and Notice

1. Operating voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

 Operating temperature and self-generated heat Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The applied voltage load should be such that the capacitor's self-generated heat is within 10°C at an atmosphere temperature of 25°C.

When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Installation

Installation torque should not exceed the torque strength values in "Specifications and Test Methods".

Do not use a screw with a thread depth greater than specified.

Avoid installation in which any bending torque is applied to the capacitor terminal.

Do not rework or resolder the terminal.

4. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture.

Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment.

Store the capacitors where the temperature and relative humidity do not exceed –10 to 40°C and 15 to 85%. Use capacitors within 6 months.

5. Vibration and impact

Do not expose a capacitor to excessive shock or vibration during use.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

DHS Series **(1)** Caution and Notice

Notice

Capacitance change of capacitor

- Class 1 capacitors
 Capacitance might change a little depending on the surrounding temperature or an applied voltage.
 Please contact us if you intend to use this product in a
- strict time constant circuit.

 Class 2 and 3 capacitors
 Class 2 and 3 capacitors with temperature characteristics
 B, E and F have an aging characteristic, whereby the
 capacitor continually decreases its capacitance slightly if
 the capacitor is left on for a long time. Moreover,
 capacitance might change greatly depending on the
 surrounding temperature or an applied voltage. So, it is
 not likely to be suitable for use in a time constant circuit.
 Please contact us if you need detailed information.

ISO9000 Certifications

Manufacturing plants which produce the products in this catalog have obtained the ISO9000 quality system certificate.

Plant	Certified Date	Organization	Registration No.	Applied standard	
Izumo Murata Manufacturing Co., Ltd.	Feb. 1. '00	Underwriters Laboratories Inc.	A5587	ISO9001	
Murata Electronics (Thailand), Ltd.	Apr. 8. '02	Underwriters Laboratories Inc.	A6279	ISO9001	

⚠ Note:

1. Export Control

⟨For customers outside Japan⟩

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
- 2 Aerospace equipment
- ③ Undersea equipment ⑤ Medical equipment
- 4 Power plant equipment 6 Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment 9 Data-processing equipment
- 8 Disaster prevention / crime prevention equipment (1) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of April 2003. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product
- 4. Please read rating and \triangle CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muRata Murata Manufacturing Co., Ltd.

http://www.murata.com/

Head Office 2-26-10, Tenjin Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111

International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp