

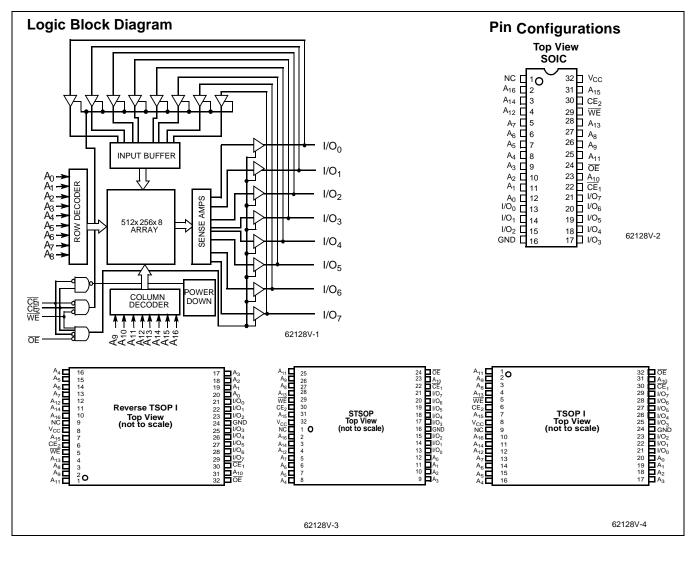
CY62128V Family

Features

- Low voltage range:
 - -2.7V-3.6V (CY62128V)
 - -2.3V-2.7V (CY62128V25)
 - -1.6V-2.0V (CY62128V18)
- · Low active power and standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62128V family is composed of three high-performance CMOS static RAMs organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (\overline{CE}_2), an active


128K x 8 Static RAM

LOW Output Enable (\overline{OE}) and three-state drivers. These devices have an automatic power-down feature, reducing the power consumption by over 99% when deselected. The CY62128V family is available in the standard 450-mil-wide SOIC, 32-lead TSOP-I, and STSOP packages.

Writing to the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and the Chip Enable two (CE_2) input HIGH. Data on the eight I/O pins (I/O_0 through I/O₇) is then written into the location specified on the address pins (A_0 through A_{16}).

Reading from the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable two (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE₂ LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE₂ HIGH, and \overline{WE} LOW).

March 27, 2001

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential (Pin 28 to Pin 14)0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State $^{[1]}$ 0.5V to V_{CC} + 0.5V
DC Input Voltage ^[1] 0.5V to V_{CC} + 0.5V

Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)

Latch-Up Current...... >200 mA

Operating Range

Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	1.6V to 3.6V		
Industrial	–40°C to +85°C	1.6V to 3.6V		

Product Portfolio

					Power Dissipation (Commercial)				
	V _{CC} Range				Operating (I _{CC})		Standby (I _{SB2})		
Product	Min.	Typ. ^[2]	Max.	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum	
CY62128V	2.7V	3.0V	3.6V	55, 70 ns	20 mA	40 mA	0.4 μΑ	100 μA (XL = 10 μA)	
CY62128V25	2.3V	2.5V	2.7V	100 ns	15 mA	20 mA	0.3 μΑ	50 μA (LL = 12 μA)	
CY62128V18	1.6V	1.8V	2.0V	200 ns	10 mA	15 mA	0.3 μΑ	30 μA (LL = 10 μA)	

Electrical Characteristics Over the Operating Range

					CY	62128V-55	5/70	
Parameter	Description	Test Con	ditions		Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.$	0 mA		2.4			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1	mA				0.4	V
V _{IH}	Input HIGH Voltage				2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage				-0.5		0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$			-1	±1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Ou	tput Disa	bled	-1	±1	+1	μA
	V _{CC} Operating Supply	$V_{CC} = Max.,$ $I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$	Com'l,	L		20	40	mA
	Current		70 ns	LL, XL		20	40	
			Ind'l, 55 ns	LL		23	50	
			Ind'l,	L		20	40	
			70 ns	LL		20	40	
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$,	Com'l,	L		15	300	μA
	Power-Down Current—	$V_{IN} \ge V_{IH} \text{ or}$ $V_{IN} \le V_{IL}, f = f_{MAX}$	70 ns	LL, XL		15	300	
	TTL Inputs		Coml, 55 ns	LL		17	350	
			Ind'l	L		15	300	
				LL		15	300	

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}$ Typ., $T_A = 25^{\circ}C$.

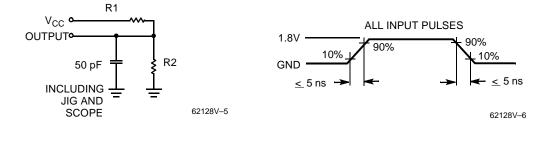
Electrical Characteristics Over the Operating Range (continued)

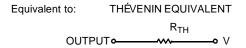
					CY			
Parameter	Description	Test Con	Min.	Typ. ^[2]	Max.	Unit		
I _{SB2}	Automatic CE	<u>Ma</u> x. V _{CC} , CE ≥ V _{CC} – 0.3V	Com'l	L		0.4	100	μΑ
	Power-Down Current— CMOS Inputs	$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$		LL			15	μΑ
		or $V_{IN} \le 0.3V$, f = 0		XL			10	μΑ
			Ind'l	L			100	μΑ
				LL			30	μΑ

Electrical Characteristics Over the Operating Range

			CY	62128V25	-100	CYe	62128V18	-200		
Parameter	Description	Test Conditions	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -0.1$	mA	2.4			0.8* V _{CC}			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 0.1 r	mΑ			0.4			0.2	V
V _{IH}	Input HIGH Voltage			2		V _{CC} +0.5	0.7* V _{CC}		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.5		0.8	-0.5		0.3* V _{CC}	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	±1	+1	-1	±0.1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-1	±1	+1	-1	±0.1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 mA,$	L LL		15	20		10	15	mA
		$f = f_{MAX} = 1/t_{RC}$	<u> </u>		45	000			400	•
I _{SB1}	Automatic CE Power-Down Current—	Max. V _{CC} , <u>CE</u> ≥ V _{IH} , V _{IN} ≥ V _{IH} or	L		15	300		5	100	μA
	TTL Inputs	$V_{IN} \le V_{IL}, f = f_{MAX}$	LL							
I _{SB2}	Automatic CE	<u>Ma</u> x. V _{CC} ,	L		0.4	50		0.4	30	μΑ
	Power-Down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, f = 0	LL			12			10	μA
		Indust'l Temp Range	LL			24			20	μΑ

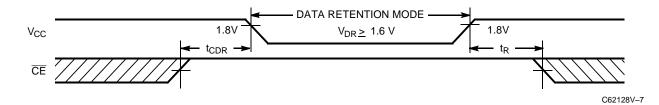
Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF	
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF	


Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

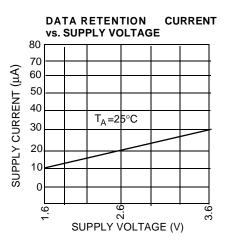


Parameters	3.3V	2.5V	1.8V	Unit
R1	1213	15909	10800	Ohms
R2	1378	4487	4154	Ohms
R _{TH}	645	3500	3000	Ohms
V _{TH}	1.75V	0.55V	0.50V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Descriptio	Conditions ^[4]	Min.	Typ. ^[2]	Max.	Unit		
V _{DR}	V_{CC} for Data Retention				1.6			V
I _{CCDR}	Data Retention Current	Com'l	L	$\frac{V_{CC}}{2\pi} = 2V$		0.4	10	μΑ
			LL, XL	$\begin{array}{l} \underline{V_{CC}} = 2V\\ CE \geq V_{CC} - 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V \text{ or}\\ V_{IN} \leq 0.3V \end{array}$			10	μA
		Ind'l	L	No input may exceed			20	μA
			LL	V _{CC} +0.3V			20	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Re	ime		0			ns	
t _R	Operation Recovery Time				t _{RC}			ns

Data Retention Waveform



Note:

4. No input may exceed V_{CC}+0.3V.

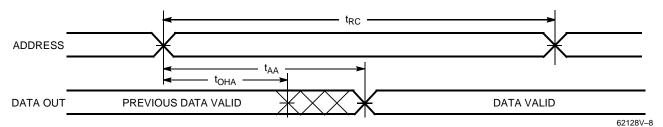
Data Retention Current Graph (for "L" version only)

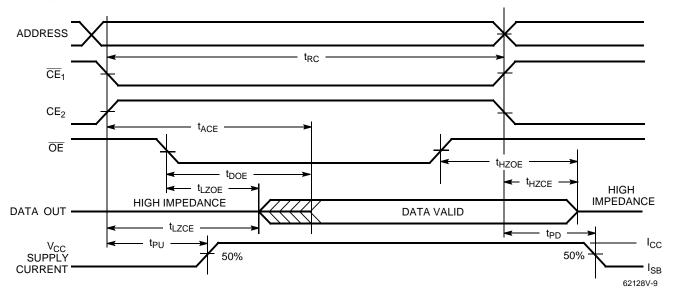
Switching Characteristics Over the Operating Range^[5]

		6212	8V-55	6212	8V-70	62128	V25-100	62128	V18-200		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYCLE											
t _{RC}	Read Cycle Time	55		70		100		200		ns	
t _{AA}	Address to Data Valid		55		70		100		200	ns	
t _{OHA}	Data Hold from Address Change	5		10		10		10		ns	
t _{ACE}	CE LOW to Data Valid		55		70		100		200	ns	
t _{DOE}	OE LOW to Data Valid		20		35		75		125	ns	
t _{LZOE}	OE LOW to Low Z ^[6]	10		10		10		10		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25		50		75	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		10		10		10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		20		25		50		75	ns	
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns	
t _{PD}	CE HIGH to Power-Down		55		70		100		200	ns	
WRITE CYCLE ^[8, 9]			•		•	•					
t _{WC}	Write Cycle Time	55		70		100		200		ns	
t _{SCE}	CE LOW to Write End	45		60		100		190		ns	
t _{AW}	Address Set-Up to Write End	45		60		100		190		ns	
t _{HA}	Address Hold from Write End	0		0		0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns	
t _{PWE}	WE Pulse Width	45		55		90		125		ns	
t _{SD}	Data Set-Up to Write End	25		30		60		100		ns	
t _{HD}	Data Hold from Write End	0		0		0		0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		20		25		50		100	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	5		5		10		15		ns	

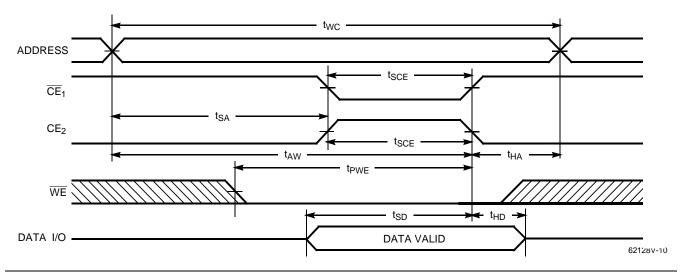
Test conditions assume signal transition time of 5 ns or less timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{01}I_{0H}$ and 100-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_{L} = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE signals must be LOW and CE₂ HIGH to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} 5.

6. 7. 8.


9.


CY62128V Family

Switching Waveforms



Read Cycle No. 2 (OE Controlled)^[11, 12]

Write Cycle No. 1 (\overline{CE}_1 or CE_2 Controlled)^[13,14]

Notes:

^{10.} Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, $CE_2=V_{IH}$.

^{11.} WE is HIGH for read cycle. 12. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

Data I/O is high impedance if OE = V_{IH}.
 If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

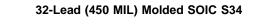
Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ HIGH During Write)^[13, 14]

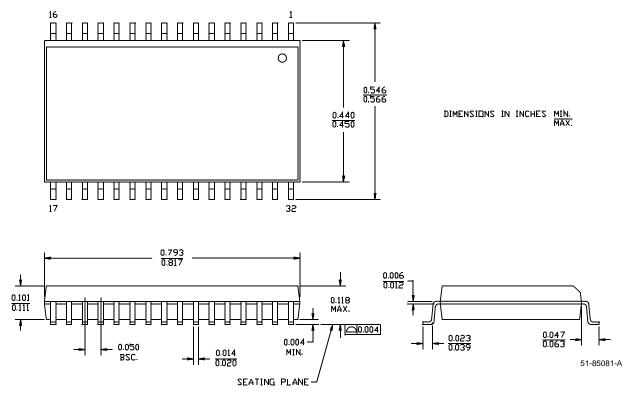
Truth Table

CE ₁	CE ₂	OE	WE	1/0 ₀ -1/0 ₇	Mode	Power	
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})	
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})	
L	Н	L	Н	Data Out	Read	Active (I _{CC})	
L	Н	Х	L	Data In	Write	Active (I _{CC})	
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})	

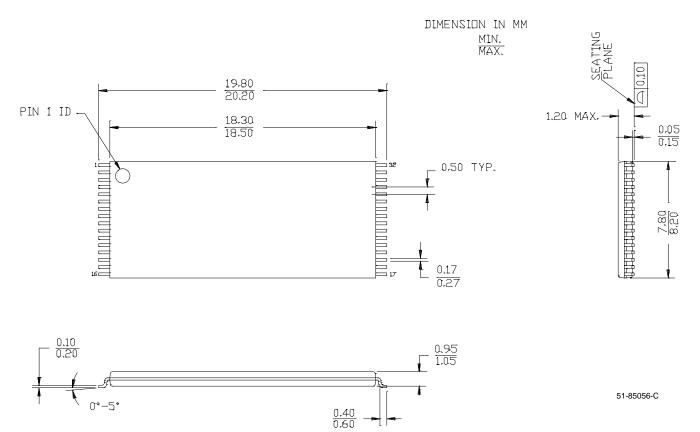
Note:

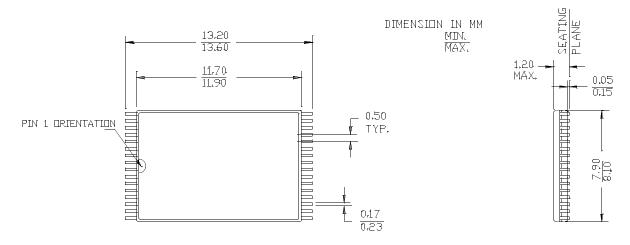
15. During this period, the I/Os are in output state and input signals should not be applied.

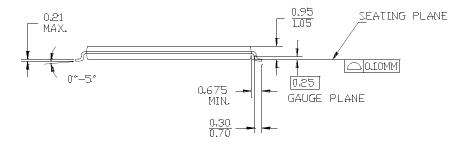

Ordering Information

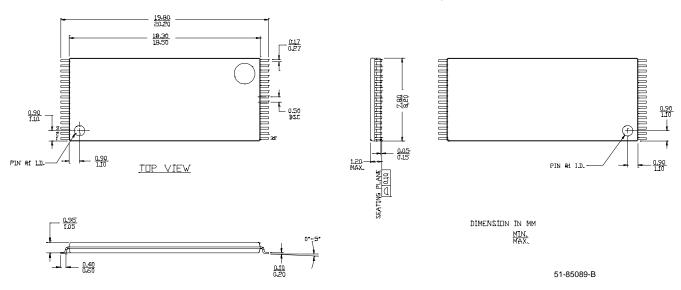

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62128VLL-55ZAI	ZA32	32-Lead STSOP Type 1	Industrial
70	CY62128VL-70SC	S34	32-Lead 450-Mil SOIC	Commercial
	CY62128VLL-70SC	-		
	CY62128VL-70ZC	Z32	32-Lead TSOP Type 1	
	CY62128VLL-70ZC			
	CY62128VL-70ZAC	ZA32	32-Lead STSOP Type 1	
	CY62128VLL-70ZAC			
	CY62128VLL-70ZRC	ZR32	32-Lead Reverse TSOP Type 1	
	CY62128VLL-70SI	S34	32-Lead 450-Mil SOIC	Industrial
	CY62128VL-70ZI	Z32	32-Lead TSOP Type 1	
	CY62128VLL-70ZI	-		
	CY62128VL-70ZAI	ZA32	32-Lead STSOP Type 1	
	CY62128VLL-70ZAI			
	CY62128VLL-70ZRI	ZR32	32-Lead Reverse TSOP Type 1	
200	CY62128V18L-200ZC	Z32	32-Lead TSOP Type 1	Commercial
	CY62128V18L-200ZAI	ZA32	32-Lead STSOP Type 1	Industrial
	CY62128V18LL-200ZAI			

Document #: 38-00547-*C






32-Lead Thin Small Outline Package Z32



32-Lead Shrunk Thin Small Outline Package ZA32

51-85094-C

32-Lead Reverse Thin Small Outline Package ZR32

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.