

# 1-Mbit (128K x 8) Static RAM

#### **Features**

• Temperature Ranges

Commercial: 0°C to 70°CIndustrial: -40°C to 85°C

— Automotive-A: -40°C to 85°C

— Automotive-E: –40°C to 125°C

4.5V–5.5V operation

· CMOS for optimum speed/power

 Low active power (70 ns Commercial, Industrial, Automotive-A)

— 82.5 mW (max.) (15 mA)

 Low standby power (55/70 ns Commercial, Industrial, Automotive-A)

— 110 μW (max.) (15 μA)

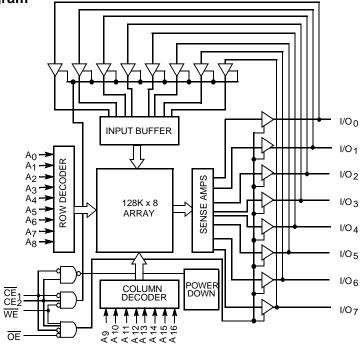
• Automatic power-down when deselected

TTL-compatible inputs and outputs

Easy memory expansion with CE<sub>1</sub>, CE<sub>2</sub>, and OE options

 Available in Pb-free and non-Pb-free 32-pin (450 mil-wide) SOIC, 32-pin STSOP and 32-pin TSOP-I

### Functional Description[1]


The CY62128BN is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE<sub>1</sub>), an active HIGH Chip Enable (CE<sub>2</sub>), an active LOW Output Enable (OE), and tri-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accompl<u>ished</u> by taking Chip Enable One ( $\overline{\text{CE}}_1$ ) and Write Enable ( $\overline{\text{WE}}$ ) inputs LOW and Chip Enable Two ( $\overline{\text{CE}}_2$ ) input HIGH. Data on the eight I/O pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is then written into the location specified on the address pins ( $A_0$  through  $A_{16}$ ).

Reading from the device is accomplished by taking Chip Enable One ( $\overline{\text{CE}_1}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing Write Enable ( $\overline{\text{WE}}$ ) and Chip Enable Two ( $\overline{\text{CE}_2}$ ) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$  through I/O $_7$ ) are placed in a high-impedance state when the device is deselected (CE $_1$  HIGH or CE $_2$  LOW), the outputs are disabled (OE HIGH), or during a write operation (CE $_1$  LOW, CE $_2$  HIGH, and WE LOW).





### **Pin Configuration**

| NC                   | V <sub>CC</sub>                                |
|----------------------|------------------------------------------------|
| A <sub>16</sub> 2 31 | <b>⊢</b>                                       |
| A12                  | CE2 WE A13 A8 A9 A10 E10/07 1/06 (A10/08) 1/08 |

#### Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 001-06498 Rev. \*A

198 Champion Court •

San Jose, CA 95134-1709

-1709 • 408-943-2600 Revised August 3, 2006



### **Product Portfolio**

|             |              |      |                            |      |       | Power Dissipation                                            |      |                     |      |
|-------------|--------------|------|----------------------------|------|-------|--------------------------------------------------------------|------|---------------------|------|
|             |              |      | V <sub>CC</sub> Range (    | V)   | Speed | Operating, I <sub>CC</sub> (mA) Standby, I <sub>SB2</sub> (μ |      |                     |      |
| Product     |              | Min. | <b>Typ.</b> <sup>[2]</sup> | Max. | (ns)  | <b>Typ.</b> <sup>[2]</sup>                                   | Max. | Typ. <sup>[2]</sup> | Max. |
| CY62128BNLL | Commercial   | 4.5  | 5.0                        | 5.5  | 55    | 7.5                                                          | 20   | 2.5                 | 15   |
|             |              |      |                            |      | 70    | 6                                                            | 15   | 2.5                 | 15   |
|             | Industrial   |      |                            |      | 55    | 7.5                                                          | 20   | 2.5                 | 15   |
|             |              |      |                            |      | 70    | 6                                                            | 15   | 2.5                 | 15   |
|             | Automotive-A |      |                            |      | 70    | 6                                                            | 15   | 2.5                 | 15   |
|             | Automotive-E |      |                            |      | 70    | 6                                                            | 25   | 2.5                 | 25   |

## **Pin Configurations**

| A <sub>11</sub> □ 25<br>A <sub>9</sub> □ 26<br>A <sub>8</sub> □ 27<br>A <sub>13</sub> □ 28<br>WE □ 29<br>CE <sub>2</sub> □ 30<br>A <sub>15</sub> □ 31 STSOP<br>V <sub>CC</sub> □ 32 Top View<br>NC □ 1 O (not to scale)<br>A <sub>16</sub> □ 2<br>A <sub>14</sub> □ 3<br>A <sub>12</sub> □ 4<br>A <sub>7</sub> □ 5<br>A <sub>6</sub> □ 6<br>A <sub>5</sub> □ 7<br>A <sub>4</sub> □ 8 | 24 DE<br>23 DE<br>22 DE<br>21 DI/O7<br>20 DI/O6<br>19 DI/O4<br>17 DI/O4<br>16 DI/O2<br>14 DI/O1<br>13 DI/O1<br>13 DI/O1<br>14 DI/O1<br>15 DI/O1<br>17 DI/O1<br>18 DI/O2<br>19 DI/O3<br>10 DI/O3<br>10 DI/O3<br>11 DI/O3<br>11 DI/O3<br>11 DI/O3<br>12 DI/O3<br>11 DI/O3<br>12 DI/O3<br>13 DI/O4<br>14 DI/O3<br>15 DI/O4<br>16 DI/O3<br>17 DI/O3<br>18 DI/O4<br>19 DI/O3<br>19 | 10<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | TSOP I<br>Top View<br>(not to scale) | 32 D DE<br>31 D CE1<br>30 D I/O <sub>7</sub><br>28 D I/O <sub>6</sub><br>27 D I/O <sub>6</sub><br>26 D I/O <sub>4</sub><br>25 D I/O <sub>1</sub><br>24 D I/O <sub>1</sub><br>23 D I/O <sub>2</sub><br>21 D A <sub>0</sub><br>19 D A <sub>1</sub><br>18 D A <sub>2</sub><br>17 D A <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### **Pin Definitions**

| Input         | A <sub>0</sub> -A <sub>16</sub> . Address Inputs                                                                                                                                           |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Input/Output  | I/O <sub>0</sub> -I/O <sub>7</sub> . Data lines. Used as input or output lines depending on operation                                                                                      |  |  |  |  |  |
| Input/Control | <b>WE</b> . Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.                                                                    |  |  |  |  |  |
| Input/Control | CE <sub>1</sub> . Chip Enable 1, Active LOW.                                                                                                                                               |  |  |  |  |  |
| Input/Control | CE <sub>2</sub> . Chip Enable 2, Active HIGH.                                                                                                                                              |  |  |  |  |  |
| Input/Control | OE. Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins |  |  |  |  |  |
| Ground        | GND. Ground for the device                                                                                                                                                                 |  |  |  |  |  |
| Power Supply  | V <sub>CC</sub> . Power supply for the device                                                                                                                                              |  |  |  |  |  |

Document #: 001-06498 Rev. \*A

<sup>2.</sup> Typical values are included for reference only and are not tested or guaranteed. Typical values are an average of the distribution across normal production variations as measured at V<sub>CC</sub> = 5.0V, T<sub>A</sub> = 25°C, and t<sub>AA</sub> = 70 ns.



### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on  $\rm V_{CC}$  to Relative  $\rm GND^{[3]}$  .... –0.5V to +7.0V DC Voltage Applied to Outputs in High-Z State  $^{[3]}$  ......-0.5V to  $\rm V_{CC}$  + 0.5V DC Input Voltage<sup>[3]</sup>.....-0.5V to V<sub>CC</sub> + 0.5V Current into Outputs (LOW) ......20 mA

| Static Discharge Voltage(per MIL-STD-883, Method 3015) | .> 2001V |
|--------------------------------------------------------|----------|
| Latch-up Current                                       | > 200 mA |

### **Operating Range**

| Range        | Ambient<br>Temperature (T <sub>A</sub> ) <sup>[4]</sup> | V <sub>CC</sub> |
|--------------|---------------------------------------------------------|-----------------|
| Commercial   | 0°C to +70°C                                            | 5V ± 10%        |
| Industrial   | -40°C to +85°C                                          |                 |
| Automotive-A | -40°C to +85°C                                          |                 |
| Automotive-E | -40°C to +125°C                                         |                 |

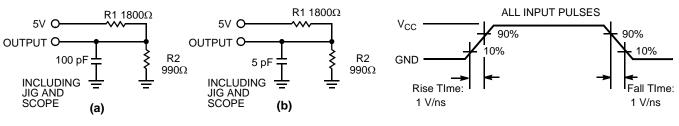
## **Electrical Characteristics** Over the Operating Range

|                  |                                             | -55                                                                                                                                                        |                           |      |                            |                          |      |                            |                          |      |
|------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|----------------------------|--------------------------|------|----------------------------|--------------------------|------|
| Parameter        | Description                                 | Test Condi                                                                                                                                                 | tions                     | Min. | <b>Typ.</b> <sup>[2]</sup> | Max.                     | Min. | <b>Typ.</b> <sup>[2]</sup> | Max.                     | Unit |
| V <sub>OH</sub>  | Output HIGH<br>Voltage                      | $V_{CC} = Min., I_{OH} = -1.$                                                                                                                              | 0 mA                      | 2.4  |                            |                          | 2.4  |                            |                          | V    |
| V <sub>OL</sub>  | Output LOW Voltage                          | $V_{CC} = Min., I_{OL} = 2.1$                                                                                                                              | mA                        |      |                            | 0.4                      |      |                            | 0.4                      | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                                                                                                            |                           | 2.2  |                            | V <sub>CC</sub><br>+ 0.3 | 2.2  |                            | V <sub>CC</sub><br>+ 0.3 | V    |
| V <sub>IL</sub>  | Input LOW Voltage[3]                        |                                                                                                                                                            |                           | -0.3 |                            | 0.8                      | -0.3 |                            | 0.8                      | V    |
| I <sub>IX</sub>  | Input Leakage<br>Current                    | $GND \leq V_I \leq V_{CC}$                                                                                                                                 | Commercial/<br>Industrial | -1   |                            | +1                       | -1   |                            | +1                       | μА   |
|                  |                                             |                                                                                                                                                            | Automotive-A              |      |                            |                          | -1   |                            | +1                       | μΑ   |
|                  |                                             |                                                                                                                                                            | Automotive-E              |      |                            |                          | -10  |                            | +10                      | μΑ   |
| I <sub>OZ</sub>  | Output Leakage<br>Current                   | $\begin{array}{l} \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$                                    | Commercial/<br>Industrial | -1   |                            | +1                       | -1   |                            | +1                       | μА   |
|                  |                                             |                                                                                                                                                            | Automotive-A              |      |                            |                          | -1   |                            | +1                       | μΑ   |
|                  |                                             |                                                                                                                                                            | Automotive-E              |      |                            |                          | -10  |                            | +10                      | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current |                                                                                                                                                            | Commercial/<br>Industrial |      | 7.5                        | 20                       |      | 6                          | 15                       | mA   |
|                  |                                             |                                                                                                                                                            | Automotive-A              |      |                            |                          |      | 6                          | 15                       | mA   |
|                  |                                             |                                                                                                                                                            | Automotive-E              |      |                            |                          |      | 6                          | 25                       | mA   |
| I <sub>SB1</sub> | Automatic CE<br>Power-down Current          | $\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}}_1 \geq \text{V}_{\text{IH}} \\ &\text{or CE}_2 \leq \text{V}_{\text{IL}}, \end{aligned}$ | Commercial/<br>Industrial |      | 0.1                        | 2                        |      | 0.1                        | 1                        | mA   |
|                  | —TTL Inputs                                 | $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$ , $f = f_{MAX}$                                                                                                 | Automotive-A              |      |                            |                          |      | 0.1                        | 1                        | mA   |
|                  |                                             | VIN S VIL, I - IMAX                                                                                                                                        | Automotive-E              |      |                            |                          |      | 0.1                        | 2                        | mA   |
| I <sub>SB2</sub> | Automatic CE<br>Power-down Current          | $\frac{\text{Ma}x. \ V_{CC},}{\text{CE}_1 \geq V_{CC} - 0.3V,}$                                                                                            | Commercial/<br>Industrial |      | 2.5                        | 15                       |      | 2.5                        | 15                       | μА   |
|                  | —CMOS Inputs                                | or $CE_2 \le 0.3V$ ,<br>$V_{IN} \ge V_{CC} - 0.3V$ ,                                                                                                       | Automotive-A              |      |                            |                          |      | 2.5                        | 15                       | μΑ   |
|                  |                                             | or $V_{IN} \le V_{CC} - 0.3V$ , $f = 0$                                                                                                                    | Automotive-E              |      |                            |                          |      | 2.5                        | 25                       | μΑ   |

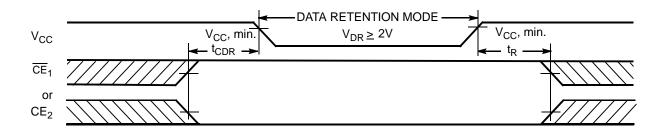
Downloaded from **Arrow.com**.

<sup>3.</sup>  $V_{\rm IL}$  (min.) = -2.0V for pulse durations of less than 20 ns. 4.  $T_{\rm A}$  is the "Instant On" case temperature.




### Capacitance<sup>[5]</sup>

| Parameter        | Description        | Test Conditions                             | Max. | Unit |
|------------------|--------------------|---------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1 \text{ MHz}$ , | 9    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                             | 9    | pF   |


### Thermal Resistance<sup>[5]</sup>

| Parameter     | Description                           | Test Conditions                                                           | 32 SOIC | 32 STSOP | 32 TSOP | Unit |
|---------------|---------------------------------------|---------------------------------------------------------------------------|---------|----------|---------|------|
| $\Theta_{JA}$ | '                                     | Test conditions follow standard test methods and procedures for measuring | 66.17   | 105.14   | 97.44   | °C/W |
| $\Theta_{JC}$ | Thermal Resistance (Junction to Case) | thermal impedance, per EIA / JESD51.                                      | 30.87   | 14.09    | 26.05   | °C/W |

### **AC Test Loads and Waveforms**



### **Data Retention Waveform**



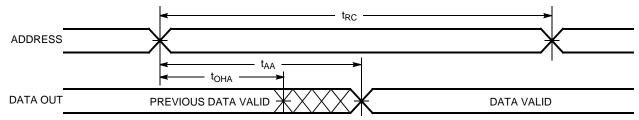
### Data Retention Characteristics (Over the Operating Range)

| Parameter         | Description                             | Conditions <sup>[6]</sup>                                                                                                                                                     |                                           |     | Тур. | Max. | Unit |
|-------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----|------|------|------|
| $V_{DR}$          | V <sub>CC</sub> for Data Retention      |                                                                                                                                                                               |                                           | 2.0 |      |      | V    |
| I <sub>CCDR</sub> | Data Retention Current                  | $\begin{array}{l} \frac{V_{CC} = V_{DR} = 2.0V,}{CE_1 \geq V_{CC} - 0.3V, \text{ or } CE_2 \leq 0.3V,}\\ V_{IN} \geq V_{CC} - 0.3V \text{ or, } V_{IN} \leq 0.3V \end{array}$ | Commercial/<br>Industrial<br>Automotive-A |     | 1.5  | 15   | μА   |
|                   |                                         |                                                                                                                                                                               | Automotive-E                              |     | 1.5  | 25   | μΑ   |
| t <sub>CDR</sub>  | Chip Deselect to Data<br>Retention Time |                                                                                                                                                                               |                                           | 0   |      |      | ns   |
| t <sub>R</sub>    | Operation Recovery Time                 |                                                                                                                                                                               |                                           | 70  |      |      | ns   |

Note:

<sup>5.</sup> Tested initially and after any design or process changes that may affect these parameters.

<sup>6.</sup> No input may exceed V<sub>CC</sub> + 0.5V.



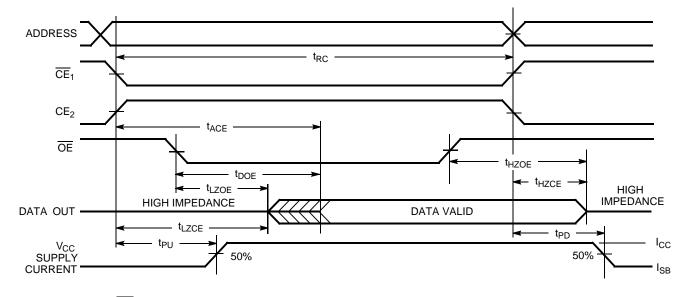

### **Switching Characteristics**<sup>[7]</sup> Over the Operating Range

|                   |                                                                                 | CY621 | 28BN-55 | CY6212 |      |      |
|-------------------|---------------------------------------------------------------------------------|-------|---------|--------|------|------|
| Parameter         | Description                                                                     | Min.  | Max.    | Min.   | Max. | Unit |
| READ CYCLE        |                                                                                 | l.    | · I     | l      |      |      |
| t <sub>RC</sub>   | Read Cycle Time                                                                 | 55    |         | 70     |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid                                                           |       | 55      |        | 70   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change                                                   | 5     |         | 5      |      | ns   |
| t <sub>ACE</sub>  | CE <sub>1</sub> LOW to Data Valid, CE <sub>2</sub> HIGH to Data Valid           |       | 55      |        | 70   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid                                                            |       | 20      |        | 35   | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z                                                                 | 0     |         | 0      |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[7, 9]</sup>                                             |       | 20      |        | 25   | ns   |
| t <sub>LZCE</sub> | CE <sub>1</sub> LOW to Low Z, CE <sub>2</sub> HIGH to Low Z <sup>[9]</sup>      | 5     |         | 5      |      | ns   |
| t <sub>HZCE</sub> | CE <sub>1</sub> HIGH to High Z, CE <sub>2</sub> LOW to High Z <sup>[8, 9]</sup> |       | 20      |        | 25   | ns   |
| t <sub>PU</sub>   | CE <sub>1</sub> LOW to Power-up, CE <sub>2</sub> HIGH to Power-up               | 0     |         | 0      |      | ns   |
| t <sub>PD</sub>   | CE <sub>1</sub> HIGH to Power-down, CE <sub>2</sub> LOW to Power-down           |       | 55      |        | 70   | ns   |
| WRITE CYCL        | <b>E</b> [10]                                                                   |       |         |        |      |      |
| t <sub>WC</sub>   | Write Cycle Time                                                                | 55    |         | 70     |      | ns   |
| t <sub>SCE</sub>  | CE <sub>1</sub> LOW to Write End, CE <sub>2</sub> HIGH to Write End             | 45    |         | 60     |      | ns   |
| t <sub>AW</sub>   | Address Set-up to Write End                                                     | 45    |         | 60     |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End                                                     | 0     |         | 0      |      | ns   |
| t <sub>SA</sub>   | Address Set-up to Write Start                                                   | 0     |         | 0      |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                                                                  | 45    |         | 50     |      | ns   |
| t <sub>SD</sub>   | Data Set-up to Write End                                                        | 25    |         | 30     |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End                                                        | 0     |         | 0      |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z <sup>[9]</sup>                                                 | 5     |         | 5      |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[8, 9]</sup>                                              |       | 20      |        | 25   | ns   |

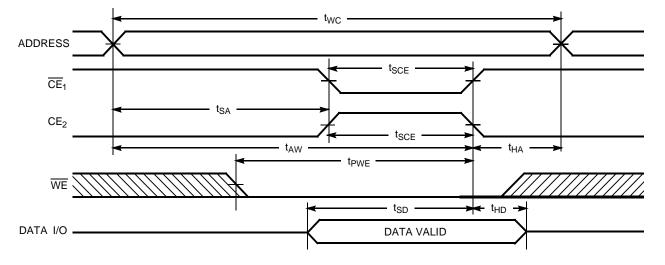
### **Switching Waveforms**

Read Cycle No.1<sup>[11, 12]</sup>




#### Notes:

- 7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 100-pF load capacitance.
- 8. thzoe, thzce, and thzwe are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- 9. At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZOE</sub> is less than t<sub>LZCE</sub>, and t<sub>HZME</sub> is less than t<sub>LZWE</sub> or any given device.


  10. The internal write time of the memory is defined by the overlap of Ct<sub>2</sub> LOW, Ct<sub>2</sub> HIGH, and WE LOW. Ct<sub>2</sub> and WE must be LOW and Ct<sub>2</sub> HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
- 11. <u>Device</u> is continuously selected.  $\overline{OE}$ ,  $\overline{CE}_1 = V_{IL}$ ,  $CE_2 = V_{IH}$ .
- 12. WE is HIGH for read cycle.

### Switching Waveforms (continued)

### Read Cycle No. 2 (OE Controlled)[12, 13]



### Write Cycle No. 1 (CE<sub>1</sub> or CE<sub>2</sub> Controlled)<sup>[14, 15]</sup>



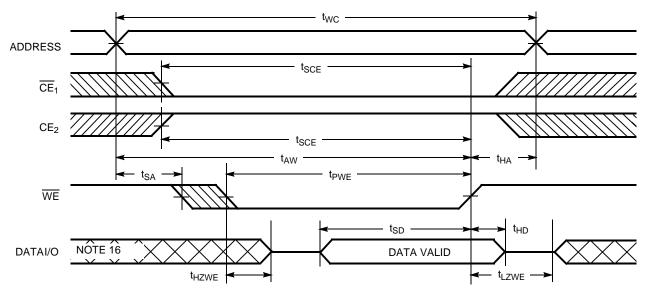
#### Notes:

13. Address valid prior to or coincident with  $\overline{CE}_1$  transition LOW and  $CE_2$  transition HIGH.

14. Data I/O is high impedance if  $\overline{OE} = V_{IH}$ .

15. If  $\overline{CE}_1$  goes HIGH or  $CE_2$  goes LOW simultaneously with  $\overline{WE}$  going HIGH, the output remains in a high-impedance state.

Document #: 001-06498 Rev. \*A




### Switching Waveforms (continued)

### Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15]



### Write Cycle No.3 (WE Controlled, OE LOW)[14, 15]



#### Note:

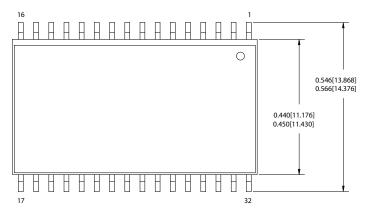
16. During this period the I/Os are in the output state and input signals should not be applied.

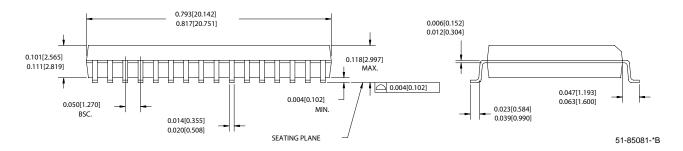


### **Truth Table**

| CE <sub>1</sub> | CE <sub>2</sub> | OE | WE | I/O <sub>0</sub> -I/O <sub>7</sub> | Mode                       | Power                      |
|-----------------|-----------------|----|----|------------------------------------|----------------------------|----------------------------|
| Н               | Х               | Х  | Х  | High Z                             | Power-down                 | Standby (I <sub>SB</sub> ) |
| Х               | L               | Х  | Х  | High Z                             | Power-down                 | Standby (I <sub>SB</sub> ) |
| L               | Н               | L  | Н  | Data Out                           | Read                       | Active (I <sub>CC</sub> )  |
| L               | Н               | Х  | L  | Data In                            | Write                      | Active (I <sub>CC</sub> )  |
| L               | Н               | Н  | Н  | High Z                             | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |

### **Ordering Information**

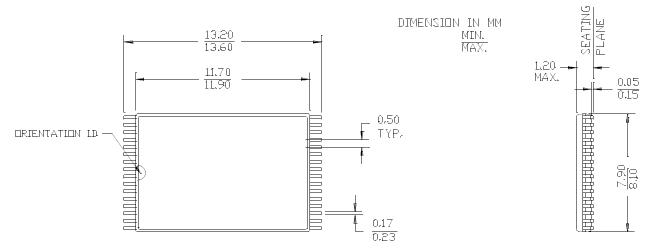

| Speed (ns) | Ordering Code      | Package<br>Diagram | Package Type                  | Operating<br>Range |
|------------|--------------------|--------------------|-------------------------------|--------------------|
| 55         | CY62128BNLL-55SC   | 51-85081           | 32-pin 450-Mil SOIC           | Commercial         |
|            | CY62128BNLL-55SXC  | 1                  | 32-pin 450-Mil SOIC (Pb-Free) |                    |
|            | CY62128BNLL-55SI   |                    | 32-pin 450-Mil SOIC           | Industrial         |
|            | CY62128BNLL-55SXI  | 1                  | 32-pin 450-Mil SOIC (Pb-Free) |                    |
|            | CY62128BNLL-55ZAI  | 51-85094           | 32-pin STSOP                  |                    |
|            | CY62128BNLL-55ZAXI | 1                  | 32-pin STSOP (Pb-Free)        |                    |
|            | CY62128BNLL-55ZI   | 51-85056           | 32-pin TSOP Type I            |                    |
|            | CY62128BNLL-55ZXI  | 1                  | 32-pin TSOP Type I (Pb-Free)  |                    |
| 70         | CY62128BNLL-70SC   | 51-85081           | 32-pin 450-Mil SOIC           | Commercial         |
|            | CY62128BNLL-70SXC  |                    | 32-pin 450-Mil SOIC (Pb-Free) |                    |
|            | CY62128BNLL-70ZC   | 51-85056           | 32-pin TSOP Type I            |                    |
|            | CY62128BNLL-70ZXC  |                    | 32-pin TSOP Type I (Pb-Free)  |                    |
|            | CY62128BNLL-70SI   | 51-85081           | 32-pin 450-Mil SOIC           | Industrial         |
|            | CY62128BNLL-70SXI  | 7                  | 32-pin 450-Mil SOIC (Pb-Free) |                    |
|            | CY62128BNLL-70ZAI  | 51-85094           | 32-pin STSOP                  |                    |
|            | CY62128BNLL-70ZAXI | 7                  | 32-pin STSOP (Pb-Free)        |                    |
|            | CY62128BNLL-70ZI   | 51-85056           | 32-pin TSOP Type I            |                    |
|            | CY62128BNLL-70ZXI  |                    | 32-pin TSOP Type I (Pb-Free)  |                    |
|            | CY62128BNLL-70ZXA  | 51-85056           | 32-pin TSOP Type I (Pb-Free)  | Automotive-A       |
|            | CY62128BNLL-70SXA  | 51-85081           | 32-pin 450-Mil SOIC (Pb-Free) |                    |
|            | CY62128BNLL-70SXE  | 51-85081           | 32-pin 450-Mil SOIC (Pb-Free) | Automotive-E       |
|            | CY62128BNLL-70ZAXE | 51-85094           | 32-pin STSOP (Pb-Free)        |                    |

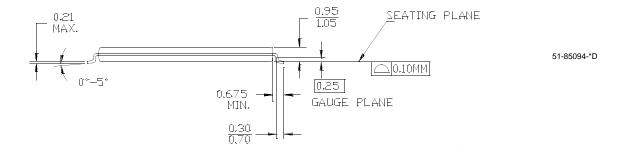

Please contact your local Cypress sales representative for availability of these parts



### **Package Diagrams**

### 32-pin (450 Mil) Molded SOIC (51-85081)

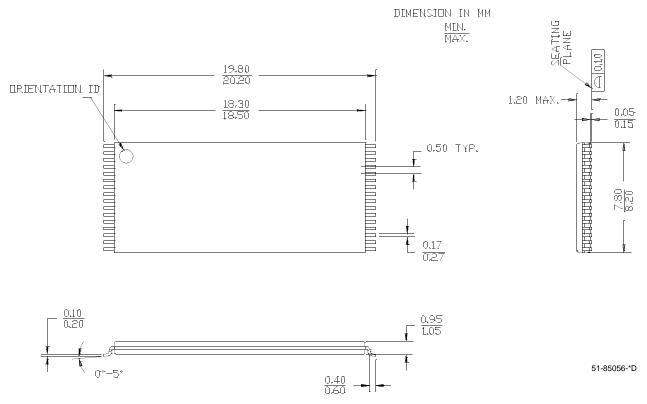





### Package Diagrams (continued)

### 32-pin STSOP (8 x 13.4 mm) (51-85094)








### Package Diagrams (continued)

### 32-pin TSOP Type I (8 x 20 mm) (51-85056)



All product and company names mentioned in this document are the trademarks of their respective holders.

[+] Feedback



## **Document History Page**

| Document Title: CY62128BN MoBL <sup>®</sup> 1-Mbit (128K x 8) Static RAM Document Number: 001-06498 |         |            |                    |                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------|---------|------------|--------------------|-----------------------------------------------------------------------------------|--|--|
| REV.                                                                                                | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                             |  |  |
| **                                                                                                  | 426503  | See ECN    | NXR                | New Data Sheet                                                                    |  |  |
| *A                                                                                                  | 488954  | See ECN    | NXR                | Added Automotive product Removed RTSOP Package Updated ordering Information table |  |  |

Document #: 001-06498 Rev. \*A