

# Multiple Input Programmable Supervisory ICs

**Data Sheet** 

ADM6305/ADM6306

#### **FEATURES**

Adjustable input threshold voltage options:  $0.4\,V$  and  $1.23\,V$  Pretrimmed  $V_{cc}$  threshold options (ADM6306)

Increments between 2.5 V and 5 V

Manual reset input (ADM6306)

4 factory programmed reset timeout delays

1 ms, 20 ms, 140 ms, and 1.12 sec (minimum)

Reset output stage: active low, open drain Low power consumption: 5 µA typical

Power supply glitch immunity

5-lead SOT-23 package

Temperature range: -40°C to +125°C

#### **APPLICATIONS**

Portable/battery operated equipment Microprocessor systems Multivoltage applications

### **GENERAL DESCRIPTION**

The ADM6305/ADM6306 are dual voltage supervisors designed to monitor two supplies and provide a reset signal to DSP- and microprocessor-based systems. Low supply current and a small form factor make these devices suitable for portable and battery operated applications.

If a monitored power supply voltage falls below the minimum voltage threshold, a single active low output asserts triggering a system reset. After all voltages rise above the selected threshold level, the reset signal remains low for the reset timeout period. Four reset timeout options are available.

The ADM6305 monitors two supplies via two adjustable resistor-programmable undervoltage reset inputs. Both RST IN1 and RST IN2 have a reset threshold of either 0.4 V or 1.23 V depending on the particular model; that is, the RST IN1 and RST IN2 threshold of the ADM6305D3ARJZ-RL7 model is

# Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

### **FUNCTIONAL BLOCK DIAGRAMS**

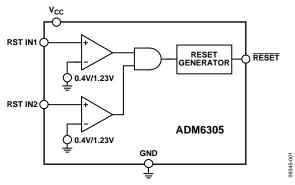



Figure 1.

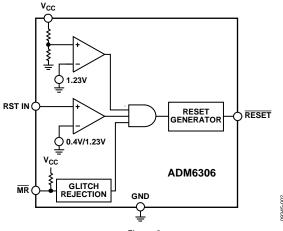



Figure 2.

1.23 V, while in the case of ADM6305D3ARJZ1-RL7 model, it is 0.4 V. The  $V_{\rm CC}$  input of the ADM6305 is not a monitored input.

The ADM6306 has one adjustable undervoltage reset input, RST IN, which features a choice of reset threshold, 0.4 V or 1.23 V (see the Ordering Guide for more information). The ADM6306 incorporates a variety of internally pretrimmed  $V_{\rm CC}$  undervoltage threshold options for monitoring supply voltages in increments between 2.5 V and 5 V. The ADM6306 also includes a manual reset input. Not all options are released for sale as standard models. See the Ordering Guide for details.

The ADM6305/ADM6306  $\overline{RESET}$  output remains valid as long as  $V_{CC}$  exceeds 0.9 V.

The ADM6305/ADM6306 are available in a 5-lead SOT-23 package. These devices are specified over the temperature range of  $-40^{\circ}$ C to  $+125^{\circ}$ C.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADM6384 Data Sheet

# **TABLE OF CONTENTS**

| Typical Performance Characteristics       | 7  |
|-------------------------------------------|----|
| Circuit Description                       | 9  |
| Reset Output                              | 9  |
| Manual Reset Input                        | 9  |
| Applications Information                  | 10 |
| Negative Going V <sub>CC</sub> Transients | 10 |
| Ensuring Reset Valid to $V_{CC} = 0 \ V$  | 10 |
| Outline Dimensions                        | 11 |
| Ordering Guide                            | 11 |

7/2005—Revision 0: Initial Version

# **SPECIFICATIONS**

 $V_{CC}$  = 2.5 V to 5 V for the ADM6305,  $V_{CC}$  = ( $V_{TH}$  + 2.5%) to 5.5 V for the ADM6306.  $T_A$  = -40°C to +125°C, unless otherwise noted. Typical values are at  $T_A = 25$ °C.

Table 1.

| Parameter                                                   | Min                    | Тур               | Max                  | Unit   | Test Conditions/Comments                                                                                                      |
|-------------------------------------------------------------|------------------------|-------------------|----------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| OPERATING VOLTAGE RANGE, V <sub>CC</sub> <sup>1</sup>       | 0.9                    |                   | 5.5                  | ٧      |                                                                                                                               |
|                                                             | 0.9                    |                   |                      | V      | V <sub>cc</sub> that guarantees valid output                                                                                  |
| INPUT CURRENT, Icc                                          |                        | 5                 | 16                   | μΑ     | $V_{CC} = 5.5 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$                                                   |
|                                                             |                        | 5                 | 20                   | μA     | $V_{CC} = 5.5 \text{ V}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                                                  |
| V <sub>CC</sub> THRESHOLD VOLTAGE (ADM6306) <sup>2, 3</sup> | V <sub>TH</sub> - 1%   | V <sub>TH</sub>   | V <sub>TH</sub> + 1% | V      | T <sub>A</sub> = 25°C                                                                                                         |
|                                                             | V <sub>TH</sub> - 1.5% | $V_{TH}$          | $V_{TH} + 1.5\%$     | V      | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$                                                                           |
|                                                             | V <sub>TH</sub> - 2.5% | $V_{TH}$          | $V_{TH} + 2.5\%$     | V      | $T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$                                                                          |
| RESET THRESHOLD TEMPERATURE COEFFICIENT                     |                        | 25                |                      | ppm/°C |                                                                                                                               |
| RESET THRESHOLD HYSTERESIS (V <sub>HYST</sub> )             |                        | $2 \times V_{TH}$ |                      | mV     |                                                                                                                               |
| RESET TIMEOUT PERIOD (t <sub>RP</sub> ) <sup>3</sup>        |                        |                   |                      |        |                                                                                                                               |
| ADM630xD1                                                   | 1.0                    | 1.4               | 2.0                  | ms     |                                                                                                                               |
| ADM630xD2                                                   | 20                     | 28                | 40                   | ms     |                                                                                                                               |
| ADM630xD3                                                   | 140                    | 200               | 280                  | ms     |                                                                                                                               |
| ADM630xD4                                                   | 1120                   | 1570              | 2240                 | ms     |                                                                                                                               |
| RESET OUTPUT VOLTAGE (Vol)                                  |                        |                   | 0.4                  | V      | V <sub>CC</sub> > 4.25 V, I <sub>SINK</sub> = 3.2 mA                                                                          |
|                                                             |                        |                   | 0.3                  | V      | $V_{CC} > 2.5 \text{ V, } I_{SINK} = 1.2 \text{ mA}$                                                                          |
|                                                             |                        |                   | 0.3                  | V      | $V_{CC} > 1.2 \text{ V, } I_{SINK} = 500  \mu\text{A}$                                                                        |
|                                                             |                        |                   | 0.3                  | V      | $V_{CC} > 1 \text{ V, } I_{SINK} = 50  \mu\text{A}$                                                                           |
|                                                             |                        |                   | 0.3                  | V      | $V_{CC} > 0.9 \text{ V, } I_{SINK} = 25  \mu\text{A}$                                                                         |
| MR INPUT (ADM6306)                                          |                        |                   |                      |        | ·                                                                                                                             |
| VII                                                         |                        |                   | 0.8                  | V      | V <sub>TH</sub> > 4.0 V                                                                                                       |
|                                                             |                        |                   | $0.3 \times V_{CC}$  | V      | V <sub>TH</sub> < 4.0 V                                                                                                       |
| V <sub>IH</sub>                                             | 2.4                    |                   |                      | V      | $V_{TH} > 4.0 \text{ V}$                                                                                                      |
|                                                             | $0.7 \times V_{CC}$    |                   |                      | V      | V <sub>TH</sub> < 4.0 V                                                                                                       |
| MR Minimum Input Pulse Width                                | 1                      |                   |                      | μs     | $T_A = 0$ °C to +70°C                                                                                                         |
| ·                                                           | 1.5                    |                   |                      | μs     | $T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$                                                                          |
| MR Glitch Rejection                                         |                        | 0.1               |                      | μs     |                                                                                                                               |
| MR To Reset Delay                                           |                        | 500               |                      | ns     |                                                                                                                               |
| MR Pull-Up Resistance                                       | 32                     | 63.5              | 100                  | kΩ     |                                                                                                                               |
| 1.23 V ADJUSTABLE RESET COMPARATOR INPUT                    |                        |                   |                      | 1.22   |                                                                                                                               |
| RST INx Input Threshold, V <sub>RSTH</sub>                  | 1.22                   | 1.23              | 1.24                 | V      | T <sub>A</sub> = 25°C                                                                                                         |
| TIST THE TITLES TOTAL TROOP                                 | 1.211                  | 1.23              | 1.249                | •      | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$                                                                           |
|                                                             | 1.20                   | 1.23              | 1.26                 | V      | $T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$                                                                         |
| RST INx Input Current, I <sub>RST INx</sub>                 | -25                    |                   | +25                  | nA     | $0 \text{ V} < \text{V}_{RST IN} < \text{V}_{CC} - 0.3 \text{ V}^4, \text{T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ |
| not in a meat carrenty har like                             | -25                    |                   | +25                  | nA     | $V_{RSTIN} = V_{RSTH}$                                                                                                        |
| RST INx Hysteresis                                          |                        | 2.5               |                      | mV     | 13111 1311                                                                                                                    |
| 0.4 V ADJUSTABLE RESET COMPARATOR INPUT                     |                        |                   |                      |        |                                                                                                                               |
| RST INx Input Threshold, V <sub>RSTH</sub>                  | 0.396                  | 0.40              | 0.404                | V      | T <sub>A</sub> = 25°C                                                                                                         |
| F                                                           | 0.394                  | 0.40              | 0.406                | V      | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$                                                                           |
|                                                             | 0.39                   | 0.40              | 0.41                 | V      | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                                                                          |
| RST INx Input Current, I <sub>RST INx</sub>                 | -25                    |                   | +25                  | nA     | $0 \text{ V} < V_{RST \text{ INx}} < V_{CC} - 0.3 \text{ V}^4, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$             |
| •                                                           | -25                    |                   | +25                  | nA     | V <sub>RST IN</sub> = V <sub>RSTH</sub>                                                                                       |

 $<sup>^{1}</sup>$  The ADM6305 switches from undervoltage reset to normal operation when 1.5 V > Vcc < 2.5 V.

<sup>&</sup>lt;sup>2</sup> The AMD6306 monitors V<sub>CC</sub> through an internal factory trimmed voltage divider, which programs the nominal reset threshold. Factory-trimmed reset thresholds are available in approximately 100 mV increments from 2.5 V to 5 V.

<sup>&</sup>lt;sup>3</sup> Not all options are released for sale as standard models. See the Ordering Guide for details. <sup>4</sup> Guaranteed by design.

### **ABSOLUTE MAXIMUM RATINGS**

### Table 2.

| Parameter                          | Rating                                        |
|------------------------------------|-----------------------------------------------|
| Vcc                                | −0.3 V to +6 V                                |
| All Pins (Except V <sub>CC</sub> ) | $-0.3 \text{ V to } (V_{CC} + 0.3 \text{ V})$ |
| Input/Output Current               | 20 mA                                         |
| Rate of Rise, V <sub>CC</sub>      | 100 V/μs                                      |
| Storage Temperature Range          | -65°C to +160°C                               |
| Operating Temperature Range        | -40°C to +125°C                               |
| Lead Temperature (10 sec)          | 300°C                                         |
| Junction Temperature               | 150°C                                         |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### THERMAL RESISTANCE

### Table 3.

| Package Type  | θ <sub>JA</sub> | Unit |
|---------------|-----------------|------|
| 5-Lead SOT-23 | 240             | °C/W |

### **ESD CAUTION**



**ESD (electrostatic discharge) sensitive device.**Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

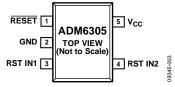



Figure 3. ADM6305 Pin Configuration

### Table 4. ADM6305 Pin Function Descriptions

| Pin No. | Mnemonic | Description                                                                                                                                                                                                                                                                                 |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | RESET    | Active Low, Open-Drain RESET Output.                                                                                                                                                                                                                                                        |
| 2       | GND      | Ground.                                                                                                                                                                                                                                                                                     |
| 3       | RST IN1  | Adjustable Reset Comparator Input. This pin asserts $\overline{\text{RESET}}$ if the input voltage is below threshold. Its high input impedance allows the use of an external resistor divider to program the monitoring threshold. Connect this pin to the $V_{CC}$ pin if it is not used. |
| 4       | RST IN2  | Adjustable Reset Comparator Input. This pin asserts RESET if the input voltage is below threshold. Its high input impedance allows the use of an external resistor divider to program the monitoring threshold. Connect this pin to Vcc if it is not used.                                  |
| 5       | Vcc      | Power Supply Input. V <sub>CC</sub> is not monitored on the ADM6305.                                                                                                                                                                                                                        |

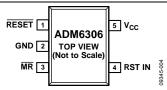



Figure 4. ADM6306 Pin Configuration

### Table 5. ADM6306 Pin Function Descriptions

| Pin No. | Mnemonic    | Description                                                                                                                                                                                                                                                                                 |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | RESET       | Active Low, Open-Drain RESET Output.                                                                                                                                                                                                                                                        |
| 2       | GND         | Ground.                                                                                                                                                                                                                                                                                     |
| 3       | MR          | Manual Reset Input.                                                                                                                                                                                                                                                                         |
| 4       | RST IN      | Adjustable Reset Comparator Input. This pin asserts $\overline{\text{RESET}}$ if the input voltage is below threshold. Its high input impedance allows the use of an external resistor divider to program the monitoring threshold. Connect this pin to the $V_{CC}$ pin if it is not used. |
| 5       | <b>V</b> cc | Power Supply Input. V <sub>CC</sub> is monitored on the ADM6306.                                                                                                                                                                                                                            |

# TYPICAL PERFORMANCE CHARACTERISTICS

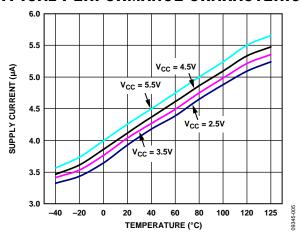



Figure 5. Supply Current vs. Temperature

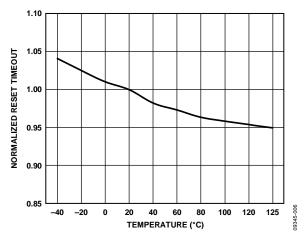



Figure 6. Reset Timeout vs. Temperature

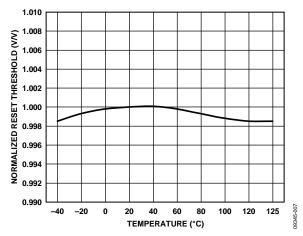



Figure 7. Reset Threshold vs. Temperature

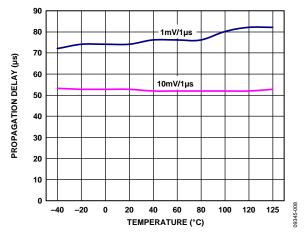



Figure 8. V<sub>CC</sub> Falling Propagation Delay vs. Temperature

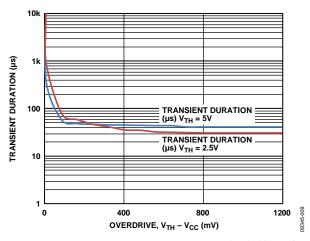



Figure 9. Maximum Transient Duration vs. V<sub>CC</sub> Reset Threshold Overdrive

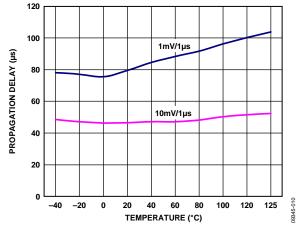



Figure 10. RST IN ( $V_{TH} = 1.23 \text{ V}$ ) Falling Propagation Delay vs. Temperature

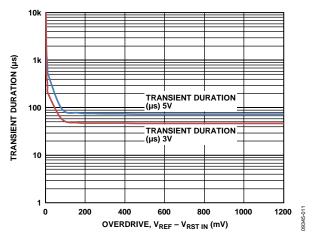



Figure 11. Maximum Transient Duration vs. RST IN ( $V_{TH} = 1.23 \text{ V}$ ) Threshold Overdrive

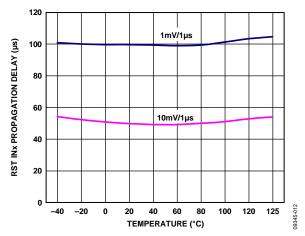



Figure 12. RST INx ( $V_{TH} = 0.4 \text{ V}$ ) Falling Propagation Delay vs. Temperature

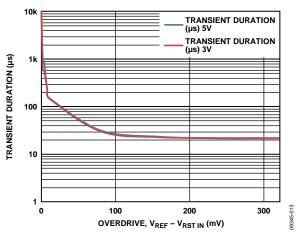



Figure 13. Maximum Transient Duration vs. RST INx ( $V_{TH} = 0.4 V$ ) Threshold Overdrive

### THEORY OF OPERATION

The ADM6305/ADM6306 are compact, low power supervisory circuits capable of monitoring two voltage rails. If a monitored voltage drops below its associated threshold, the active low reset output asserts low.

The ADM6305 monitors two supplies via two adjustable resistor-programmable undervoltage reset inputs. Both RST IN1 and RST IN2 have a reset threshold of either 0.4 V or 1.23 V depending on the particular model; that is, the RST IN1 and RST IN2 threshold of the ADM6305D3ARJZ-RL7 model is 1.23 V, while in the case of ADM6305D3ARJZ1-RL7 model, it is 0.4 V. The  $V_{\rm CC}$  input of the ADM6305 is not a monitored input.

The ADM6306 has one adjustable undervoltage reset input, RST IN, which features a choice of reset threshold, 0.4 V or 1.23 V (see the Ordering Guide for more information). The ADM6306 incorporates a variety of internally pretrimmed  $V_{\rm CC}$  undervoltage threshold options for monitoring supply voltages in increments between 2.5 V to 5 V. The ADM6306 also includes a manual reset input.

### INPUT CONFIGURATION

The threshold voltage at an adjustable input is either  $0.4~\rm V$  or  $1.23~\rm V$ . To monitor a voltage greater than the typical adjustable threshold,  $\rm V_{RSTH}$ , connect a resistor divider network to the circuit as depicted in Figure 14, where

$$V_{TH} = V_{RSTH} \left( \frac{R1 + R2}{R2} \right)$$

$$V_{IN}$$

$$R1 \underbrace{ }_{R2} \underbrace{ }_{T} \underbrace{ }_{V_{RSTH}}$$

Figure 14. Setting the Adjustable Monitor

The high input impedance (leakage of  $\pm 25$  nA) of the adjustable inputs minimizes the offset error caused by the leakage current and external resistor divider. This allows the user to apply a divider with large resistance to minimize the loss. The offset voltage caused by the leakage current is calculated by R1  $\times$   $\pm 25$  nA.

The RST INx inputs are designed to ignore fast voltage transients (see Figure 11 and Figure 12). Increase the noise immunity by connecting a 0.1  $\mu F$  bypass capacitor between RST INx and ground. Note that adding capacitance to RST INx slows the overall response time of the device.

There is no hysteresis associated with the 0.4 V adjustable inputs; instead, a time-based glitch filter to prevent false triggering is used. The glitch filter avoids the need to use a portion of the operating supply range to provide hysteresis

on this input. The ADM6305/ADM6306 are powered via  $V_{\rm CC}$ . Figure 9 shows the maximum transient duration vs.  $V_{\rm CC}$  reset threshold overdrive, for which reset pulses are not generated. Figure 9 depicts the maximum pulse width that a <u>negative</u> going  $V_{\rm CC}$  transient may typically have without causing  $\overline{\rm RESET}$  to be asserted. As the amplitude of the transient increases, the maximum allowable pulse width decreases. The addition of a bypass capacitor on  $V_{\rm CC}$  provides additional transient immunity.

### **RESET OUTPUT CONFIGURATION**

The ADM6305/ADM6306 are available in a choice of four reset timeouts. After the monitored supplies rise above their associated threshold level, the  $\overline{\text{RESET}}$  signal remains low for the reset timeout period before deasserting. Subsequently, if a monitored supply falls below its associated threshold, the  $\overline{\text{RESET}}$  output reasserts. The open-drain  $\overline{\text{RESET}}$  output of the ADM6305/ADM6306 remains valid as long as  $V_{CC}$  exceeds 0.9 V.

The ADM6305 remains in UVLO when  $V_{CC}$  is below 1.5 V. The RESET output is controlled by RTS INx if  $V_{CC}$  exceeds 2.5 V.

The open-drain  $\overline{\text{RESET}}$  output allows the ADM6305 and ADM6306 to interface easily with microprocessors and devices with bidirectional reset pins. Connecting the supervisory devices  $\overline{\text{RESET}}$  output directly to the microcontrollers  $\overline{\text{RESET}}$  pin with a single pull-up resistor allows either device to issue a system reset (see Figure 15).

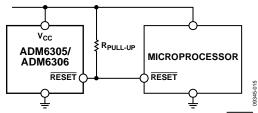



Figure 15. Interfacing to Microprocessors with Bidirectional RESET Output

### **MANUAL RESET**

The ADM6306 features a manual reset input  $(\overline{MR})$  which, when driven low, asserts the reset output. When  $\overline{MR}$  transitions from low to high, reset remains asserted for the duration of the reset active timeout period before deasserting. The  $\overline{MR}$  input has a 63.5 k $\Omega$  internal pull-up resistor so that the input is always high when unconnected. An external push-button switch can be connected between  $\overline{MR}$  and ground so that the user can generate a reset. Debounce circuitry is integrated on-chip for this purpose. Noise immunity is provided on the  $\overline{MR}$  input, and fast, negative going transients of up to 0.1 µs (typical) are ignored. If required, a 0.1 µF capacitor between  $\overline{MR}$  and ground provides additional noise immunity.

# **DEVICE MODEL OPTIONS**

The ADM6305/ADM6306 include many device options; however, not all options are released for sale. Released options are called standard models and are listed in the Ordering Guide. For the most up to date list of standard models, check the Multi Voltage

Monitors page on the Analog Devices website. Contact sales for information on nonstandard models and be aware that samples and production units have very long lead times.

Table 6. ADM6306 Vcc Reset Voltage Threshold Options

|                               |       | T <sub>A</sub> = 25° | C     | T <sub>A</sub> = | –40°C to +125°C |      |
|-------------------------------|-------|----------------------|-------|------------------|-----------------|------|
| <b>Reset Threshold Number</b> | Min   | Тур                  | Max   | Min              | Max             | Unit |
| 25                            | 2.463 | 2.5                  | 2.538 | 2.438            | 2.563           | V    |
| 26                            | 2.591 | 2.63                 | 2.669 | 2.564            | 2.696           | V    |
| 27                            | 2.66  | 2.7                  | 2.741 | 2.633            | 2.768           | V    |
| 28                            | 2.758 | 2.8                  | 2.842 | 2.73             | 2.87            | V    |
| 29                            | 2.886 | 2.93                 | 2.974 | 2.857            | 3               | V    |
| 30                            | 2.955 | 3                    | 3.045 | 2.925            | 3.075           | V    |
| 31                            | 3.034 | 3.08                 | 3.126 | 3.003            | 3.157           | V    |
| 32                            | 3.152 | 3.2                  | 3.248 | 3.12             | 3.28            | V    |
| 33                            | 3.251 | 3.3                  | 3.35  | 3.218            | 3.383           | V    |
| 34                            | 3.349 | 3.4                  | 3.451 | 3.315            | 3.485           | V    |
| 35                            | 3.448 | 3.5                  | 3.553 | 3.413            | 3.588           | V    |
| 36                            | 3.546 | 3.6                  | 3.654 | 3.51             | 3.69            | V    |
| 37                            | 3.645 | 3.7                  | 3.756 | 3.608            | 3.793           | V    |
| 38                            | 3.743 | 3.8                  | 3.857 | 3.705            | 3.895           | V    |
| 39                            | 3.842 | 3.9                  | 3.959 | 3.803            | 3.998           | V    |
| 40                            | 3.94  | 4                    | 4.06  | 3.9              | 4.1             | V    |
| 41                            | 4.039 | 4.1                  | 4.162 | 3.998            | 4.203           | V    |
| 42                            | 4.137 | 4.2                  | 4.263 | 4.095            | 4.305           | V    |
| 43                            | 4.236 | 4.3                  | 4.365 | 4.193            | 4.408           | V    |
| 44                            | 4.314 | 4.38                 | 4.446 | 4.27             | 4.49            | V    |
| 45                            | 4.433 | 4.5                  | 4.568 | 4.388            | 4.613           | V    |
| 46                            | 4.561 | 4.63                 | 4.699 | 4.514            | 4.746           | V    |
| 47                            | 4.63  | 4.7                  | 4.771 | 4.583            | 4.818           | V    |
| 48                            | 4.728 | 4.8                  | 4.872 | 4.68             | 4.92            | V    |
| 49                            | 4.827 | 4.9                  | 4.974 | 4.778            | 5.023           | V    |
| 50                            | 4.925 | 5.0                  | 5.075 | 4.875            | 5.125           | V    |

**Table 7. Reset Timeout Options** 

| Reset Timeout Period Code | Min  | Тур  | Max  | Unit |
|---------------------------|------|------|------|------|
| ADM630xD1                 | 1.0  | 1.4  | 2.0  | ms   |
| ADM630xD2                 | 20   | 28   | 40   | ms   |
| ADM630xD3                 | 140  | 200  | 280  | ms   |
| ADM630xD4                 | 1120 | 1570 | 2240 | ms   |

**Table 8. Adjustable Input Threshold Options** 

|               | Monitored Input Threshold |                        |        |  |  |
|---------------|---------------------------|------------------------|--------|--|--|
| Model         | RST IN1                   | RST IN1 RST IN2 RST IN |        |  |  |
| ADM6305Z-RL7  | 1.23 V                    | 1.23 V                 | N/A    |  |  |
| ADM6305Z1-RL7 | 0.4 V                     | 0.4 V                  | N/A    |  |  |
| ADM6306Z-R7   | N/A                       | N/A                    | 1.23 V |  |  |
| ADM6306Z1-R7  | N/A                       | N/A                    | 0.4 V  |  |  |

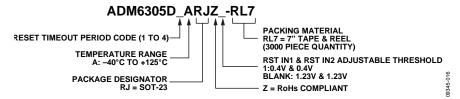



Figure 16. ADM6305 Ordering Code Structure

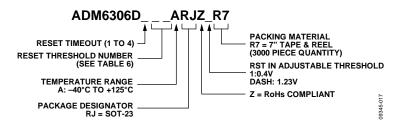



Figure 17. ADM6306 Ordering Code Structure

**Table 9. Standard Models** 

|                    |         | Monitored In |                       |        |                       |
|--------------------|---------|--------------|-----------------------|--------|-----------------------|
| Model              | RST IN1 | RST IN2      | V <sub>cc</sub> Reset | RST IN | Minimum Reset Timeout |
| ADM6305D3ARJZ-RL7  | 1.23 V  | 1.23 V       | N/A                   | N/A    | 140 ms                |
| ADM6305D3ARJZ1-RL7 | 0.4 V   | 0.4 V        | N/A                   | N/A    | 140 ms                |
| ADM6306D131ARJZ-R7 | N/A     | N/A          | 3.08 V                | 1.23 V | 1 ms                  |
| ADM6306D131ARJZ1R7 | N/A     | N/A          | 3.08 V                | 0.4 V  | 1 ms                  |
| ADM6306D329ARJZ-R7 | N/A     | N/A          | 2.93 V                | 1.23 V | 140 ms                |
| ADM6306D330ARJZ-R7 | N/A     | N/A          | 3 V                   | 1.23 V | 140 ms                |
| ADM6306D331ARJZ-R7 | N/A     | N/A          | 3.08 V                | 1.23 V | 140 ms                |
| ADM6306D331ARJZ1R7 | N/A     | N/A          | 3.08 V                | 0.4 V  | 140 ms                |
| ADM6306D344ARJZ-R7 | N/A     | N/A          | 4.38V                 | 1.23 V | 140 ms                |
| ADM6306D346ARJZ-R7 | N/A     | N/A          | 4.63 V                | 1.23 V | 140 ms                |

### **OUTLINE DIMENSIONS**

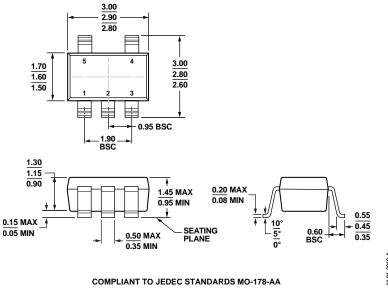



Figure 18. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters

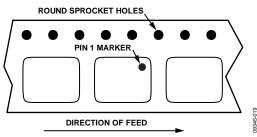



Figure 19. ADM6305/ADM6306 Reel Orientation

### **ORDERING GUIDE**

| ONDERING COIDE           |                   |                                |                     |                |              |  |
|--------------------------|-------------------|--------------------------------|---------------------|----------------|--------------|--|
| Model <sup>1, 2, 3</sup> | Temperature Range | Ordering Quantity <sup>4</sup> | Package Description | Package Option | Marking Code |  |
| ADM6305D3ARJZ-RL7        | -40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LG9          |  |
| ADM6305D3ARJZ1-RL7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LG8          |  |
| ADM6306D131ARJZ-R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LGA          |  |
| ADM6306D131ARJZ1R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LGC          |  |
| ADM6306D329ARJZ-R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LLY          |  |
| ADM6306D330ARJZ-R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LM0          |  |
| ADM6306D331ARJZ-R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LG6          |  |
| ADM6306D331ARJZ1R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LQC          |  |
| ADM6306D344ARJZ-R7       | −40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LM1          |  |
| ADM6306D346ARJZ-R7       | -40°C to +125°C   | 3,000                          | 5-Lead SOT-23       | RJ-5           | LLZ          |  |

<sup>&</sup>lt;sup>1</sup> ADM6305 and ADM6306 follow the C2 Pin 1 orientation standard for tape and reel packaging (see Figure 19).

<sup>&</sup>lt;sup>2</sup> The ADM6305/ADM6306 include many device options, however, not all options are released for sale. Released options are called standard models and are listed in the Ordering Guide. For the most up to date list of standard models, check the Multi Voltage Monitors page on the Analog Devices website. Contact sales for information on nonstandard models and be aware that samples and production units have very long lead times.

 $<sup>^{3}</sup>$  Z = RoHS Compliant Part.

<sup>&</sup>lt;sup>4</sup> If ordering nonstandard models, complete the ordering code shown in Figure 16 and Figure 17 by inserting the reset threshold, reset timeout, and adjustable threshold suffixes.

**NOTES**