

64-Mbit (4M words × 16-bit) Static RAM with Error-Correcting Code (ECC)

Features

- Ultra-low standby current
 - □ Typical standby current: 6 µA
 - Maximum standby current: 38 µA
- High speed: 55 ns
- Embedded error-correcting code (ECC) for single-bit error correction^[1]
- Operating voltage range: 2.2 V to 3.6 V
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Available in Pb-free 48-ball VFBGA package

Functional Description

CY62187G30 is a high-performance CMOS, low-power (MoBL[®]) SRAM device with embedded ECC^[2]. This device is offered in Dual Chip Enable option.

To access a Dual Chip Enable device, assert both Chip Enable inputs – $\overline{\text{CE}}_1$ as LOW and CE_2 as HIGH.

To perform data writes, assert the Write Enable ($\overline{\text{WE}}$) input LOW, and provide the data and address on the device data pins (I/O $_0$ through I/O $_1$ s) and address pins (A $_0$ through A $_2$ 1) respectively. The Byte High Enable ($\overline{\text{BHE}}$) and Byte Low Enable ($\overline{\text{BLE}}$) inputs control byte writes and write data on the corresponding I/O lines to the memory location specified. $\overline{\text{BHE}}$ controls I/O $_8$ through I/O $_1$ 5 and $\overline{\text{BLE}}$ controls I/O $_0$ through I/O $_7$.

To perform data reads, assert the Output Enable (\overline{OE}) input and provide the required address on the address lines. You can access the read data on the I/O lines (I/O $_0$ through I/O $_{15}$). To perform byte accesses, assert the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of the data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are placed in a High-Z state when the device is deselected (\overline{CE}_1 HIGH / \overline{CE}_2 LOW for a Dual Chip Enable device), or the control signals are deasserted (\overline{OE} , \overline{BLE} , \overline{BHE}).

These devices have a unique byte power-down feature where, when both Byte Enables (BHE and BLE) are disabled, the devices seamlessly switch to the standby mode irrespective of the state of the Chip Enables, thereby saving power.

CY62187G30 is available in a Pb-free 48-ball VFBGA package. See Logic Block Diagram – CY62187G30 on page 2.

For a complete list of related documentation, click here.

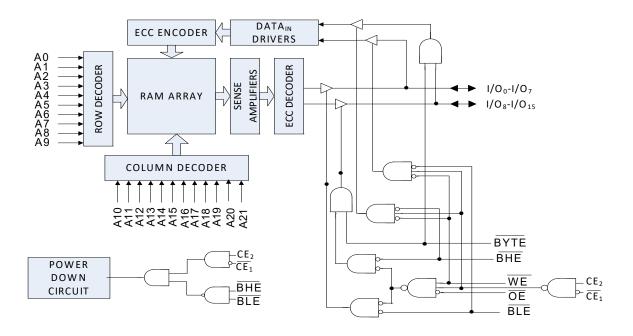
Product Portfolio

					Current Consumption				
Product	Features and Options	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} , (mA) Stand			andby, I _{SB2} (µA)	
Troduct	(see Pin Configuration – CY62187G30)	range	vec range (v)	Opeca (113)	f = f _{max}				
	- 0102107030)				Typ ^[3]	Max	Typ ^[3]	Max	
CY62187G30	Dual Chip Enable	Industrial	2.2 V-3.6 V	55	40	55	6	38	

Notes

- 1. SER FIT rate <0.1 FIT/Mb. Refer to AN88889 for details.
- 2. This device does not support automatic write-back on error detection.
- 3. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25°C.

Cypress Semiconductor Corporation
Document Number: 002-24731 Rev. *A

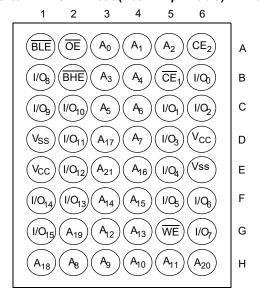

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600

Revised October 30, 2019

Logic Block Diagram - CY62187G30

Contents


Pin Configuration - CY62187G30	4
Maximum Ratings	5
Operating Range	
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	7
Data Retention Waveform	7
Switching Characteristics	
Switching Waveforms	
Truth Table - CY62187G30	

Ordering Information	14
Ordering Code Definitions	
Package Diagram	
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	

Pin Configuration - CY62187G30

Figure 1. 48-ball VFBGA Pinout (Dual Chip Enable) – CY62187G30 [4]

Notes

- 4. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
- 5. Tie the BYTE pin in the 48-pin TSOP I package to V_{CC} to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M × 8 configuration, pin 45 is the extra address line A21, while BHE, BLE, and I/O₈ to I/O₁₄ pins are not used and can be left floating.

Document Number: 002-24731 Rev. *A Page 4 of 18

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage temperature-65°C to + 150°C

Ambient temperature

Supply voltage

DC input voltage ^[6]	–0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

ļ	Grade	Ambient Temperature	$V_{cc}^{[7]}$	
ļ	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V	

DC Electrical Characteristics

Over the operating range of -40°C to 85°C

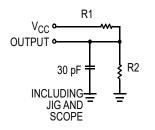
D	B		To at O a multiple of		55 ns		1114	
Parameter	Des	scription	Test Conditions		Min	Typ [8]	Max	Unit
	Output HIGH	2.2 V to 2.7 V	V_{CC} = Min, I_{OH} = -0.1 mA		2.0	_	-	
V _{OH}	voltage	2.7 V to 3.6 V	V_{CC} = Min, I_{OH} = -1.0 mA	2.4	_	_		
	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 mA		_	_	0.4	
V _{OL}	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 mA		_	_	0.4	V
	Input HIGH	2.2 V to 2.7 V	-		1.8	_	V _{CC} + 0.3	V
V _{IH}	voltage ^[6]	2.7 V to 3.6 V	-		2.0	_	V _{CC} + 0.3	
V	Input LQW	2.2 V to 2.7 V	-		-0.3	_	0.6	
V _{IL}	voltage ^[6]	2.7 V to 3.6 V	-		-0.3	_	0.8	
I _{IX}	Input leakage	current	$GND \le V_{IN} \le V_{CC}$		-1.0	_	+1.0	
I _{OZ}	Output leakag	je current	GND ≤ V _{OUT} ≤ V _{CC} , Output disa	bled	-1.0	_	+1.0	μA
I _{CC}	V _{CC} operating supply current			f = 22.22 MHz (45 ns)	_	40	55.0	mA
			CiviO3 levels	f = 1 MHz	-	15	38.0	
I _{SB1} ^[11]	Automatic Po Current – CM V _{CC} = 2.2 V to	OS Inputs;	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{V} \text{or} \text{CE}_2 \le 0.2 \text{V}$ or $(\overline{\text{BHE}} \text{and} \overline{\text{BLE}}) \ge \text{V}_{\text{CC}} - 0.2 \text{V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{V}, \text{V}_{\text{IN}} \le 0.2 \text{V},$ $\text{f} = f_{\text{max}} (\text{address and data only}),$ $\text{f} = 0 (\overline{\text{OE}}, \text{and} \overline{\text{WE}}), \text{V}_{\text{CC}} = \text{V}_{\text{CC}(\text{max})}$		-	12.0	38.0	μА
				_	_	_	-	
			$\overline{CE}_1 \ge V_{CC} - 0.2V$ or	_	-	_	-	=
			$CE_2 \le 0.2 \text{ V or}$	_	-	_	-	
I _{SB2} ^[11]	Automatic Power-down Current – CMOS Inputs V _{CC} = 2.2 V to 3.6 V		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V},$ $f = 0, V_{CC} = V_{CC(max)}$	-	-	6.0	38.0	μА

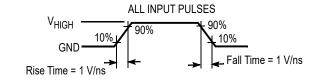
Notes

- 6. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 7. Full device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 400-µs wait time after V_{CC} stabilizes to its operational value.
- 8. Indicates the value for the center of distribution at 3.0 V, 25°C and not 100% tested.
 9. Chip enables (CE₁ and CE₂) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 10. The I_{SB2} maximum limits at 25 °C, 40 °C, and 70 °C are guaranteed by design and not 100% tested.

Document Number: 002-24731 Rev. *A Page 5 of 18

Capacitance


Parameter [11]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T. = 25 °C f = 1 MHz V = V	15.0	pF
C _{OUT}	Output capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	15.0	pF


Thermal Resistance

Parameter [11]	Description	Test Conditions	48-ball VFBGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer	82.6	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	printed circuit board	10.8	°C/W

AC Test Loads and Waveforms

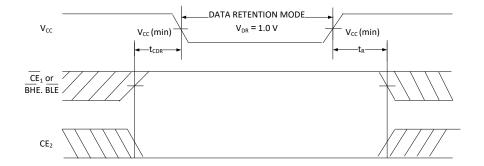
Figure 2. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V
V _{HIGH}	2.5	3.0	V

Note

^{11.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ [12]	Max	Unit
V_{DR}	V _{CC} for data retention	-	1.5	_	_	V
ICCDR ^[13, 14]	$2.2 \text{ V} < \text{V}_{\text{CC}} \le 3.6 \text{ V}$ $\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \le 0.2 \text{ V}$ or $(\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \ge \text{V}_{\text{CC}} - 0.2 \text{ V}$, $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \le 0.2 \text{ V}$ Data retention current		-	6.0	38.0	μА
	Data reterment current	$\begin{aligned} &1.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 2.2 \text{ V}, \\ &\overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \leq 0.2 \text{ V} \\ &\text{or } (\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \leq 0.2 \text{ V} \end{aligned}$	-	-	48.0	
t _{CDR} ^[15]	Chip deselect to data retention time	-	0.0	-	-	_
t _R ^[15, 16]	Operation recovery time	-	55.0	_	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform [17]

Notes

- 12. Indicates the value for the center of distribution at 3.0 V, 25°C and not 100% tested.
- 13. Chip Enables ($\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating. 14. I_{CCDR} is guaranteed only after the device is first powered up to V_{CC(min)} and then brought down to V_{DR}.
- 15. These parameters are guaranteed by design and are not tested.
- 16. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 400 μs or stable at V_{CC(min)} ≥ 400 μs.

 17. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Parameter [18]	December 41 and	55	Unit	
Parameter [10]	Description -	Min	Max	Unit
Read Cycle			•	1
t _{RC}	Read cycle time	55.0	_	ns
t _{AA}	Address to data valid / Address to ERR valid	_	55.0	ns
t _{OHA}	Data hold from address change / ERR hold from address change	10.0	_	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid / CE LOW to ERR valid	_	55.0	ns
t _{DOE}	OE LOW to data valid / OE LOW to ERR valid	_	25.0	ns
t _{LZOE}	OE LOW to low Z ^[19, 20]	5.0	_	ns
t _{HZOE}	OE HIGH to High-Z ^[19, 20, 21]	_	18.0	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to low Z ^[19, 20]	10.0	_	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High-Z ^[19, 20, 21]	_	18.0	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[22]	0.0	_	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[22]	_	55.0	ns
t _{DBE}	BLE / BHE LOW to data valid	_	55.0	ns
t _{LZBE}	BLE / BHE LOW to low Z ^[19]	5.0	_	ns
t _{HZBE}	BLE / BHE HIGH to High-Z ^[19, 21]	_	18.0	ns
Write Cycle [23, 24]			•	1
t _{WC}	Write cycle time	55.0	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	40.0	_	ns
t _{AW}	Address setup to write end	40.0	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	40.0	_	ns
t _{BW}	BLE / BHE LOW to write end	40.0	_	ns
t _{SD}	Data setup to write end	25.0	_	ns
t _{HD}	Data hold from write end	0.0	_	ns
t _{HZWE}	WE LOW to High-Z ^[19, 20, 21]	_	18.0	ns
t _{LZWE}	WE HIGH to low Z ^[19, 20]	10.0	-	ns

^{18.} Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading shown in Figure 2 on page 6, unless specified otherwise.

^{19.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device. 20. Tested initially and after any design or process changes that may affect these parameters. 21. t_{HZCE}, t_{HZCE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.

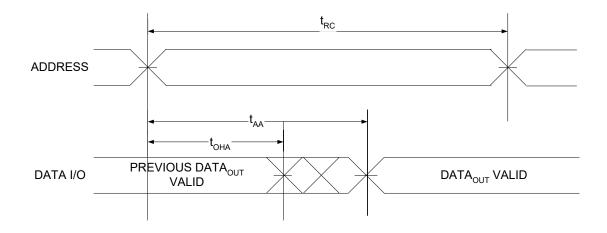
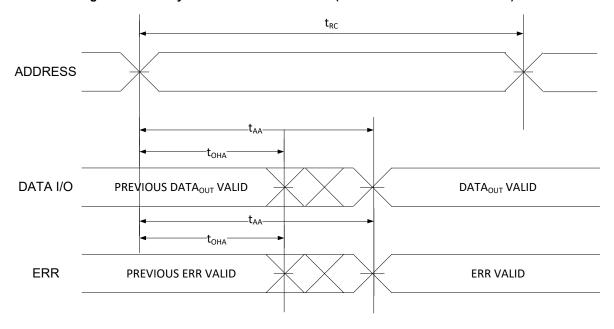
^{22.} These parameters are guaranteed by design and are not tested.

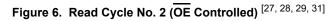
^{23.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that

^{24.} The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 4. Read Cycle No. 1 of CY62187G30 (Address Transition Controlled) $^{[25,\,26]}$


Figure 5. Read Cycle No. 1 of CY62177GE30 (Address Transition Controlled) $^{[25,\ 26]}$

Notes 25. The device is continuously selected. $\overline{OE} = V_{|L}$, $\overline{CE} = V_{|L}$, \overline{BHE} or \overline{BLE} , or both = $V_{|L}$. 26. WE is HIGH for read cycle.

Switching Waveforms (continued)

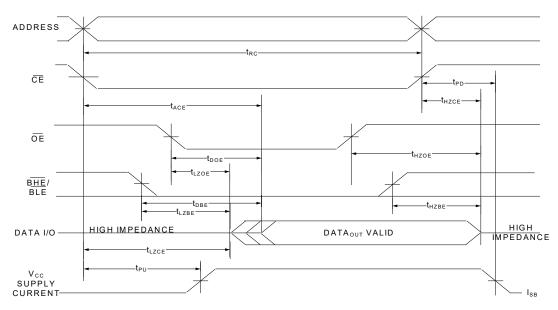
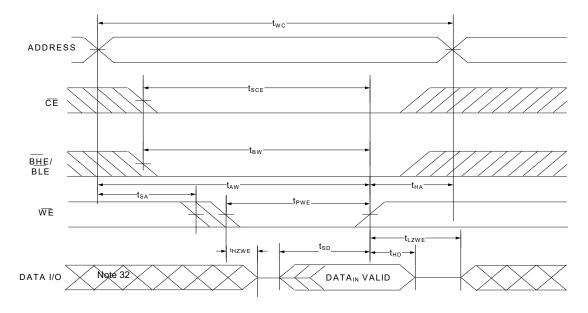



Figure 7. Write Cycle No. 1 (WE Controlled, OE LOW) [28, 30, 31, 32]

Notes

- 27. $\overline{\text{WE}}$ is HIGH for read cycle.
- 28. For all Dual Chip Enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.
- 29. Address valid prior to or coincident with $\overline{\text{CE}}$ LOW transition.
- 30. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE, or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write
- 31. Data I/O is in the High-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 32. During this period, the I/Os are in the output state. Do not apply input signals.
- 33. The minimum write cycle pulse width should be equal to the sum of $t_{\mbox{\scriptsize HZWE}}$ and $t_{\mbox{\scriptsize SD}}.$

Switching Waveforms (continued)

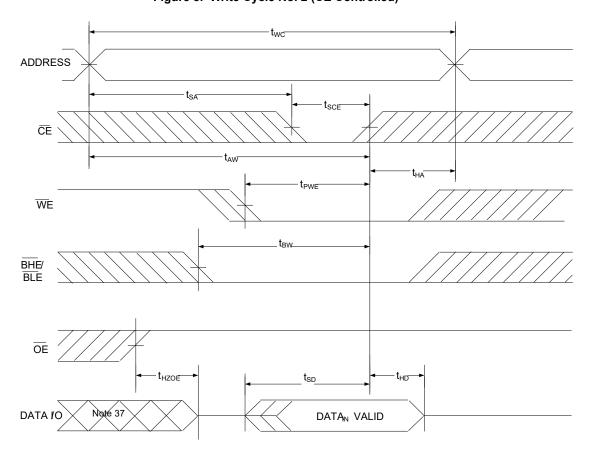


Figure 8. Write Cycle No. 2 (CE Controlled) [34, 35, 36]

Notes

^{34.} For all Dual Chip Enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

^{35.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write. Any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

36. Data I/O is in the High-Z state if CE = V_{IH}, or OE = V_{IH}, or BHE, and/or BLE = V_{IH}.

^{37.} During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [38, 39, 40]

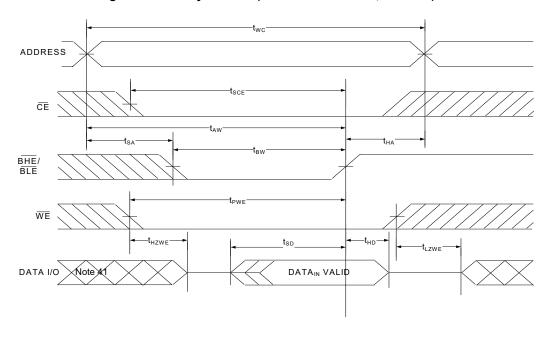
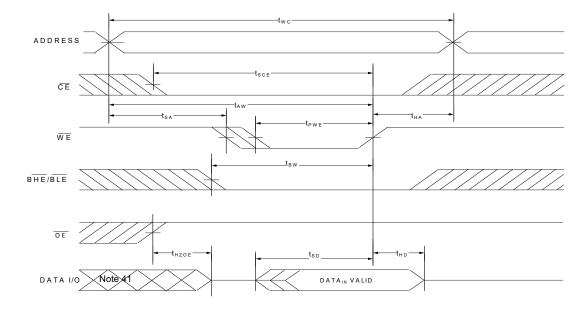



Figure 10. Write Cycle No. 5 (WE Controlled) [38, 39, 40]

Notes

^{38.} For all Dual Chip Enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.

^{39.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write. Any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{40.} Data I/O is in the High-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

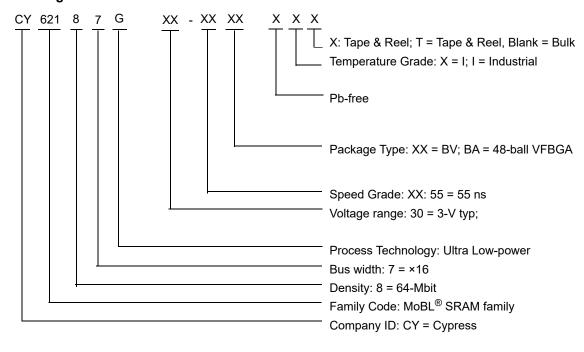
^{41.} During this period, the I/Os are in output state. Do not apply input signals.

Truth Table - CY62187G30

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[42]	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
X ^[42]	L	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
X ^[42]	X ^[42]	Х	Х	Н	Н	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High-Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High-Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})

Note

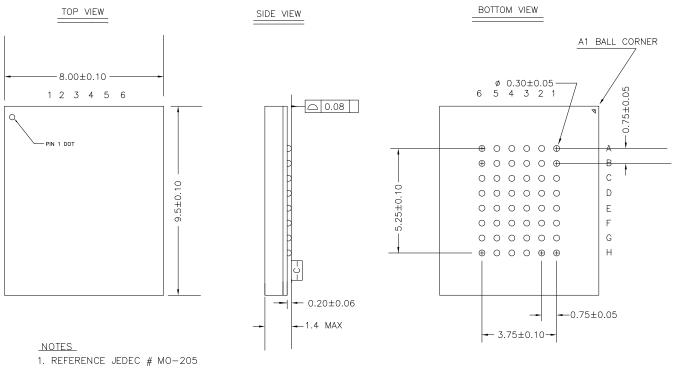
Document Number: 002-24731 Rev. *A Page 13 of 18


^{42.} The 'X' (Don't care) state for the Chip Enables refers to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins are not permitted.

Ordering Information

Spee (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	Operating Range
55	2.2 V-3.6 V	CY62187G30-55BAXI	001-50044	48-ball VFBGA	Dual Chip Enable	Industrial
	2.2 V=3.0 V	CY62187G30-55BAXIT				

Ordering Code Definitions



Document Number: 002-24731 Rev. *A Page 14 of 18

Package Diagram

Figure 11. 48L FBGA 8 \times 9.5 \times 1.4 MM BK48L Package Outline, 001-50044

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-50044 *D

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CE	Chip Enable		
CMOS	Complementary metal oxide semiconductor		
I/O	Input/output		
ŌĒ	Output Enable		
SRAM	Static random access memory		
TSOP	Thin small outline package		
VFBGA	Very fine-pitch ball grid array		
WE	Write Enable		

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	Hz megahertz	
μΑ	microampere	
μS	microsecond	
mA	milliampere	
mm	millimeter	
ns	nanosecond	
Ω	ohm	
%	percent	
pF	picofarad	
V	volt	
W	watt	

Document Number: 002-24731 Rev. *A Page 16 of 18

Document History Page

Document Title: CY62187G30 MoBL, 64-Mbit (4M words × 16-bit) Static RAM with Error-Correcting Code (ECC) Document Number: 002-24731								
Rev.	ECN	Submission Date	Description of Change					
**	6270829	08/16/2018	New datasheet					
*A	6714290	10/30/2019	Updated maximum standby current value in Features, Product Portfolio, and DC Electrical Characteristics. Updated Icc maximum value in Product Portfolio and DC Electrical Characteristics. Updated Icc @ 1MHz maximum value in DC Electrical Characteristics. Updated Data Retention Characteristics. Added Thermal Resistance values. Added Package Diagram spec 001-50044.					

Document Number: 002-24731 Rev. *A Page 17 of 18

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2018-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthrorized access to or use of a Cypress product. CYPRESS DES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-24731 Rev. *A Revised October 30, 2019 Page 18 of 18