

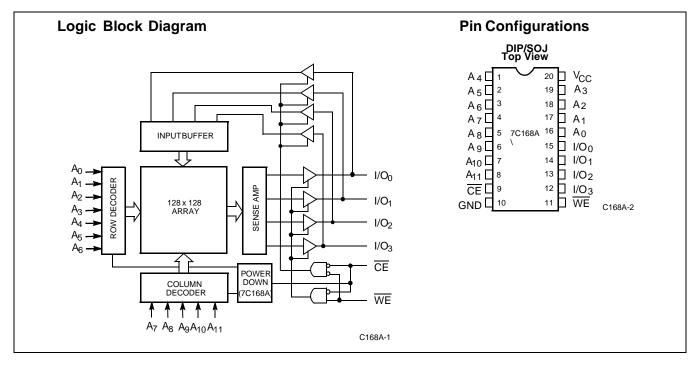
CY7C168A

4Kx4 RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
 - —t_{AA} = 15 ns
- Low active power
 - —633 mW
- Low standby power
- —110 mW
- TTL-compatible inputs and outputs
- V_{IH} of 2.2V
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description


The CY7C168A is a high-performance CMOS static RAM organized as 4096 by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}) and three-state drivers. The CY7C168A has an automatic power-down feature, reducing the power consumption by 77% when deselected.

<u>Writing</u> to the device is accomplished when the Chip Select (\overline{CE}) and Write Enable (WE) inputs are both LOW. Data on the four data input/output pins (I/O₀ through I/O₃) is written into the memory location specified on the address pins (A₀ through A₁₁).

<u>Reading the device is accomplished by taking the Chip Enable</u> (CE) LOW, while Write Enable (WE) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data input/output pins (I/O_0 through I/O_3).

The input/out<u>put</u> pins remain in a high-impedance state when Chip Enable (CE) is HIGH or Write Enable (WE) is LOW.

A die coat is used to insure alpha immunity.

Selection Guide

		7C168A-15	7C168A-20	7C168A-25	7C168A-35	7C168A-45
Maximum Access Time	15	20	25	35	45	
Maximum Operating	Commercial	115	90	90	90	90
Current (mA)	Military	-	100	100	100	100

Cypress Semiconductor Corporation • Document #: 38-05029 Rev. **

3901 North First Street • San Jose • CA 95134 • 408-943-2600 Revised August 24, 2001

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential (Pin 20 to Pin 10)0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State0.5V to +7.0V
DC Input Voltage3.0V to +7.0V

Output Current into Outputs (Low)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V

Latch-Up Current.....>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}		
Commercial	0°C to +70°C	5V ± 10%		
Military ^[1]	–55°C to +125°C	5V ± 10%		

Electrical Characteristics Over the Operating Range^[2]

				7C16	8A-15	7C16	8A-20	
Parameter	Description	Test Condit	Test Conditions		Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.$	0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[3]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-10	+10	-10	+10	μA
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC},$ Output Disabled	$GND \leq V_O \leq V_{CC},$ Output Disabled			-10	+10	μA
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} = 0	GND		-350		-350	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		115		90	mA
	Supply Current	$I_{OUT} = 0 \text{ mA}$	Mil		-		100	
I _{SB1}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l		40		40	mA
	Power-Down Current $\overline{CE} \ge V_{IH}$		Mil		-		40	
I _{SB2}	Automatic CE	$\frac{\text{Max. V}_{\text{CC}}}{\text{CE} \ge \text{V}_{\text{CC}} - 0.3\text{V}}$	Com'l		20		20	mA
	Power-Down Current CE >		Mil		-		20	

Notes:

1. T_A is the "instant on" case temperature.

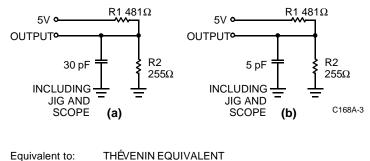
See the last page of this specification for Group A subgroup testing information. V_{IL} min. = -3.0V for pulse durations less than 30 ns.

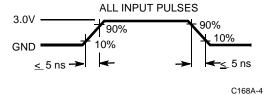
2. 3.

4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

				7C16	8A-25	7C16	8A-35	7C16	8A-45	
Parameter	Description	Test Conditio	ns	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.$.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[3]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-10	+10	-10	10	-10	10	μΑ	
I _{OZ}	Output Leakage Current	GND <u>≤</u> V _O <u>≤</u> V _{CC} Output Disabled		-10	+10	-50	50	-50	50	μA
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} =	GND		-350		-350		-350	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		90		90		90	mA
	Supply Current	I _{OUT} = 0 mA	Mil		100		100		100	1
I _{SB1}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l		20		20		20	mA
	Power-Down Current	CE ≥ V _{IH}	Mil		20		20		20	1
I _{SB2}	Automatic CE <u>Ma</u> x. V _{CC} ,		Com'l		20		20		20	mA
	Power-Down Current	CE <u>></u> VCC – 0.3 V	Mil		20		20		20	1

Electrical Characteristics Over the Operating Range^[2] (continued)


Capacitance^[5]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

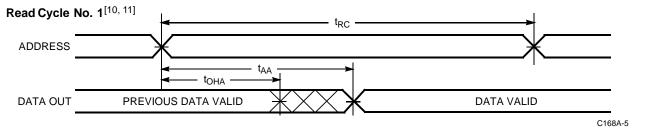
Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to:

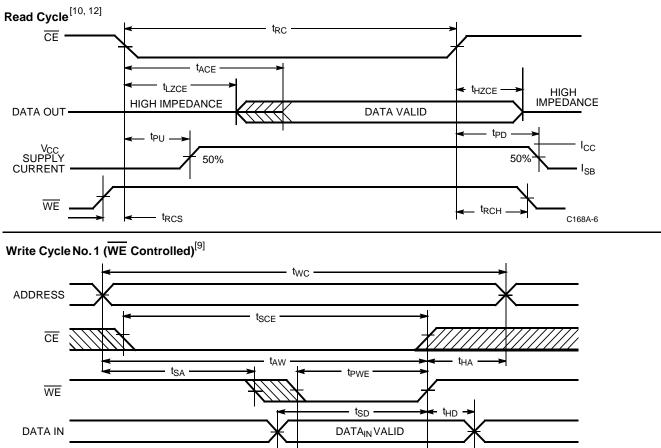
167Ω OUTPUT -**___o** 1.73V ------

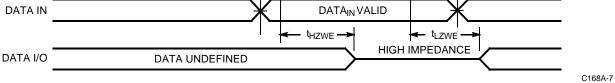

Document #: 38-05029 Rev. **

		7C168A-15		7C168A-20		7C168A-25		7C168A-35		7C168A-45		
Parameter	ameter Description N		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE						•					
t _{RC}	Read Cycle Time	15		20		25		35		45		ns
t _{AA}	Address to Data Valid		15		20		25		35		45	ns
t _{OHA}	Output Hold from Address Change	5		5		5		5		5		ns
t _{ACE}	Power Supply Current		15		20		25		35		45	ns
t _{LZCE}	CE LOW to Low Z ^[7]	5		5		5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		8		8		10		15		15	ns
t _{PU}	CE LOW to Power Up	0		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		15		20		20		20		25	ns
t _{RCS}	Read Command Set-Up	0		0		0		0		0		ns
t _{RCH}	Read Command Hold	0		0		0		0		0		ns
WRITE CYC	LE ^[9]											
t _{WC}	Write Cycle Time	15		20		20		25		40		ns
t _{SCE}	CE LOW to Write End	12		15		20		25		30		ns
t _{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		15		20		20		ns
t _{SD}	Data Set-Up to Write End	10		10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	7		7		7		5		5		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]	5		5		5		5		10		ns

Switching Characteristics Over the Operating Range^[2,6]

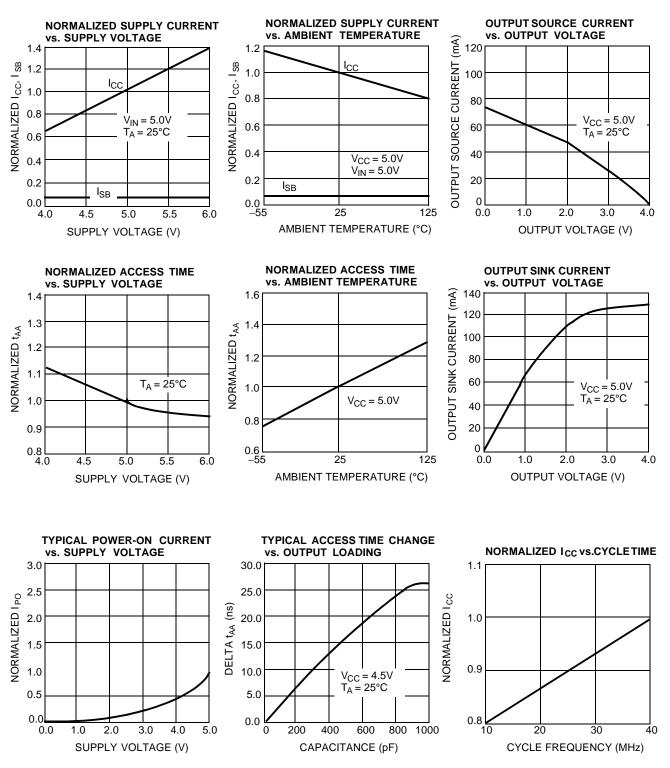
Switching Waveforms


Notes:


- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. 6.
- At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices. Transition is measured ±500 mV from steady state voltage with specified loading in part 7. (b) of AC Test Loads and Waveforms.

(b) OFAC Test Loads and waveforms. 8. t_{HZCE} and t_{HZWE} are tested with $C_L = 5$ pF as in part (a) of Test Loads and Waveforms. Transition is measured ±500 mV from steady state voltage. 9. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signal must be LOW to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 10. WE is HIGH for read cycle. 11. Device is continuously selected, $\overline{CE} = V_{|L}$.

Switching Waveforms (continued)


Write Cycle No. 2 (\overline{CS} Controlled)^[9, 13] t_{WC} ADDRESS t_{SA} tSCE CE t_{AW} \mathbf{t}_{HA} t_{PWE} WE t_{SD} -➡ t_{HD} → DATA IN DATA IN VALID t_{HZWE} **HIGH IMPEDANCE** DATA I/O DATA UNDEFINED C168A-8

Notes:

12. Address valid prior to or coincident with CE transition LOW.
13. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

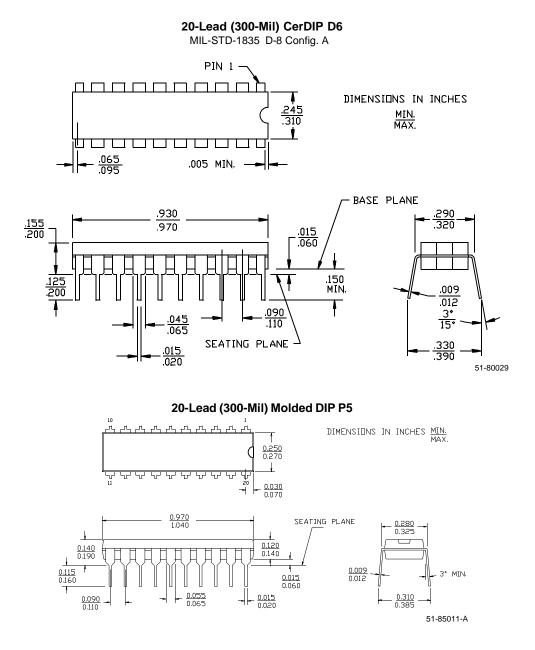
Typical DC and AC Characteristics

Ordering Information

Speed (ns)	I _{CC} (mA)	Ordering Code	Package Name	Package Type	Operating Range
15	115	CY7C168A-15PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-15VC	V5	20-Lead Molded SOJ	
20	90	CY7C168A-20PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-20VC	V5	20-Lead Molded SOJ	
		CY7C168A-20DMB	D6	20-Lead (300-Mil) CerDIP	Military
25	70	CY7C168A-25PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-25VC	V5	20-Lead Molded SOJ	
	80	CY7C168A-25DMB	D6	20-Lead (300-Mil) CerDIP	Military
35	70	CY7C168A-35PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-35VC	V5	20-Lead Molded SOJ	
		CY7C168A-35DMB	D6	20-Lead (300-Mil) CerDIP	Military
45	70	CY7C168A-45PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-45VC	V5	20-Lead Molded SOJ	
		CY7C168A-45DMB	D6	20-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS Group A Subgroup Testing

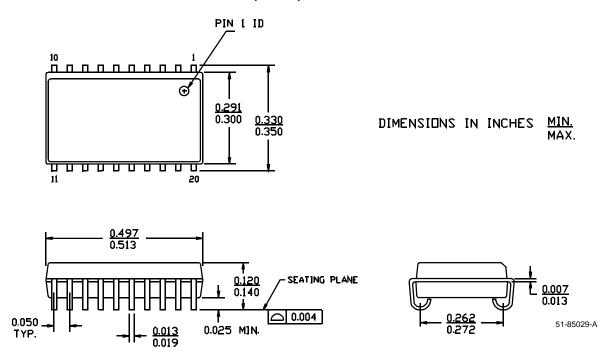
DC Characteristics


Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{RCS}	7, 8, 9, 10, 11
t _{RCH}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Package Diagrams



CY7C168A

Package Diagrams (continued)

20-Lead (300-Mil) Molded SOJ V5

Document #: 38-05029 Rev. **

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY7C168A 4K x 4 RAM Document Number: 38-05029						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106815	09/10/01	SZV	Change from Spec number: 38-00095 to 38-05029		